Epigenetic mechanisms form the basis of cellular memory, developmental decisions, and the cellular immune system that defends against transposons and viruses. Organs develop from the shoot apical meristem (SAM) to shape the plant's areal phenotype, and stem cells in the SAM serve as a functional germline. While many details on the regulation of stem cell pool size, organ initiation, and patterning at the meristem periphery are known, we know surprisingly little about the molecular characteristics of SAM cells, including their epigenome and how it changes during development. Here, we summarize information on epigenetic regulation of selected genes necessary for stem cell maintenance. As recent evidence suggests that SAM stem cells might be a hotspot of transposon activation, we discuss this aspect of epigenetic control in the meristem and speculate on mechanisms that maintain the flexibility of SAM stem cells in response to developmental or environmental cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2022.102267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!