Hydrogel-based drug delivery holds great promise in topical tumor treatment. However, the simple construction of multifunctional therapeutic hydrogels under physiological conditions is still a huge challenge. Herein, for the first time, a multifunctional hyaluronan/MnO nanocomposite (HHM) hydrogel with injectable and self-healing capabilities was constructed under physiological conditions through innovative in situ mineralization-triggered Mn-hydrazide coordination crosslinking. The hydrogel formed from Mn and hydrazided hyaluronan under optimized conditions exhibited a high elastic modulus >1 kPa, injectability, self-healing function, stimuli-responsiveness and catalase-like activity. In vitro and in vivo biological experiments demonstrated that our HHM hydrogel could not only efficiently relieve hypoxia by in situ catalytic decomposition of endogenous HO into O but also achieve synergistic photodynamic/photothermal therapy of 4T1 breast cancer in a mouse tumor model. This study presented a novel mineralization-driven metal-hydrazide coordination crosslinking approach and developed a multifunctional therapeutic platform for O-enhanced efficient topical dual-phototherapy of breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.08.024 | DOI Listing |
Acta Biomater
January 2025
College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.
View Article and Find Full Text PDFAnal Chim Acta
May 2024
Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2023
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
Multidrug resistance in cancer stem cells (CSCs) is a major barrier to chemotherapy; hence, developing CSC-specific targeted nanocarriers for efficient drug delivery is critical. In this study, monodisperse hollow-structured MnO (H-MnO) with a mesoporous shell was created for efficient targeted drug delivery. An effective therapeutic compound isoliquiritigenin (ISL) was confirmed to inhibit the lung cancer stem-cell phenotype by natural compound screening based on integrated microfluidic devices.
View Article and Find Full Text PDFInt J Biol Macromol
May 2023
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China. Electronic address:
Increasing the formation of reactive oxygen species (ROS) and reducing the elimination of ROS are the two main objectives in the development of novel inorganic sonosensitizers for use in sonodynamic therapy (SDT). Therefore, BTO-Pd-MnO-HA nanocomplexes with targeted tumor cells and degradable oxygen-producing shells were designed as piezoelectric sonosensitizers for enhancing SDT. The deposition of palladium particles (Pd NPs) leads to the formation of Schottky junctions, promoting the separation of electron-hole pairs and thereby increasing the efficiency of toxic ROS generation in SDT.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2022
Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China.
Hydrogel-based drug delivery holds great promise in topical tumor treatment. However, the simple construction of multifunctional therapeutic hydrogels under physiological conditions is still a huge challenge. Herein, for the first time, a multifunctional hyaluronan/MnO nanocomposite (HHM) hydrogel with injectable and self-healing capabilities was constructed under physiological conditions through innovative in situ mineralization-triggered Mn-hydrazide coordination crosslinking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!