A wide range of functionalized pyridine ligands have been employed to synthesize a variety of Pd(II) complexes of the general formulas [Pd](NO) and [PdY], where = 4-X-py and Y = Cl or NO. Their structures have been unambiguously established via analytical and spectroscopic methods in solution (NMR spectroscopy and mass spectrometry) as well as in the solid state (X-ray diffraction). This in-depth characterization has shown that the functionalization of ligand molecules with groups of either electron-withdrawing or -donating nature (EWG and EDG) results in significant changes in the physicochemical properties of the desired coordination compounds. Downfield shifts of signals in the H NMR spectra were observed upon coordination within and across the complex families, clearly indicating the relationship between NMR chemical shifts and the ligand basicity as estimated from p values. A detailed crystallographic study has revealed the operation of a variety of weak interactions, which may be factors explaining aspects of the solution chemistry of the complexes. The Pd(II) complexes have been found to be efficient and versatile precatalysts in Suzuki-Miyaura and Heck cross-coupling reactions within a scope of structurally distinct substrates, and factors have been identified that have contributed to efficiency improvement in both processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455277PMC
http://dx.doi.org/10.1021/acs.inorgchem.2c01996DOI Listing

Publication Analysis

Top Keywords

pdii complexes
12
pyridine ligands
8
complexes pyridine
4
ligands substituent
4
substituent effects
4
nmr
4
effects nmr
4
nmr data
4
data crystal
4
crystal structures
4

Similar Publications

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.

View Article and Find Full Text PDF

This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).

View Article and Find Full Text PDF

Since the 1980s, pressure-sensitive paint (PSP) has been used as an optical pressure sensor for measuring surface pressure on aircraft models in wind tunnels. Typically, PSPs have utilized platinum(II)-5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin due to its high pressure sensitivity, phosphorescence lifetime of ∼50 μs, reasonable quantum yield of emission, and resistance to photo-oxidation. This work investigates the photophysics and electronic structure of metal complexes of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin, namely, Zn(II), Pd(II), and Ir(III), as potentially improved luminophores for polymer-based PSPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!