Flexural oscillations of freestanding films, nanomembranes, and nanowires are attracting growing attention for their importance to the fundamental physical and optical properties and device applications of two-dimensional and nanostructured (meta)materials. Here, we report on the observation of short-time scale ballistic motion in the flexural mode of a nanomembrane cantilever, driven by thermal fluctuation of flexural phonons, including measurements of ballistic velocities and displacements performed with subatomic resolution, using a free electron edge-scattering technique. Within intervals <10 μs, the membrane moves ballistically at a constant velocity, typically ~300 μm/s, while Brownian-like dynamics emerge for longer observation periods. Access to the ballistic regime provides verification of the equipartition theorem and Maxwell-Boltzmann statistics for flexural modes and can be used in fast thermometry and mass sensing during atomic absorption/desorption processes on the membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390981PMC
http://dx.doi.org/10.1126/sciadv.abn8007DOI Listing

Publication Analysis

Top Keywords

subatomic resolution
8
ballistic dynamics
4
flexural
4
dynamics flexural
4
flexural thermal
4
thermal movements
4
movements nanomembrane
4
nanomembrane revealed
4
revealed subatomic
4
resolution flexural
4

Similar Publications

High resolution information is important for accurate structure modelling. However, this level of detail is typically difficult to attain in macromolecular crystallography because the diffracted intensities rapidly fade with increasing resolution. The problem cannot be circumvented by increasing the fluence as this leads to detrimental radiation damage.

View Article and Find Full Text PDF

The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p_{T}) hadron trigger in proton-proton and central Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions.

View Article and Find Full Text PDF

Wide-Band Unambiguous Quantum Sensing via Geodesic Evolution.

Phys Rev Lett

June 2024

Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China.

We present a quantum sensing technique that utilizes a sequence of π pulses to cyclically drive the qubit dynamics along a geodesic path of adiabatic evolution. This approach effectively suppresses the effects of both decoherence noise and control errors while simultaneously removing unwanted resonance terms, such as higher harmonics and spurious responses commonly encountered in dynamical decoupling control. As a result, our technique offers robust, wide-band, unambiguous, and high-resolution quantum sensing capabilities for signal detection and individual addressing of quantum systems, including spins.

View Article and Find Full Text PDF

Subatomic structure of orthorhombic thaumatin at 0.89 Å reveals that highly flexible conformations are crucial for thaumatin sweetness.

Biochem Biophys Res Commun

April 2024

Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan; Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

Thaumatin is a sweet-tasting protein that elicits a sweet taste at a threshold of approximately 50 nM. Structure-sweetness relationships in thaumatin suggest that the basicity of two amino acids residues, Arg82 and Lys67, are particularly responsible for sweetness. Using tetragonal crystals, our structural analysis suggested that flexible sidechain conformations of these two residues play an important role in sweetness.

View Article and Find Full Text PDF

Structural Analysis of Single-Atom Catalysts by X-ray Absorption Spectroscopy.

Acc Chem Res

February 2024

Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.

ConspectusMetal nanoparticles (NPs) are one of the most frequently used heterogeneous catalysts. However, only the surface atoms in the NPs can participate in catalytic reactions. To maximize the atomic efficiency, the active sites can be reduced to single atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!