A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing dependence between frequency and severity through shared random effects. | LitMetric

Assessing dependence between frequency and severity through shared random effects.

PLoS One

Department of Statistics and Actuarial Sciences, The University of Waterloo, Waterloo, Ontario, Canada.

Published: August 2022

Research on the occurrence and the final size of wildland fires typically models these two events as two separate processes. In this work, we develop and apply a compound process framework for jointly modelling the frequency and the severity of wildland fires. Separate modelling structures for the frequency and the size of fires are linked through a shared random effect. This allows us to fit an appropriate model for frequency and an appropriate model for size of fires while still having a method to estimate the direction and strength of the relationship (e.g., whether days with more fires are associated with days with large fires). The joint estimation of this random effect shares information between the models without assuming a causal structure. We explore spatial and temporal autocorrelation of the random effects to identify additional variation not explained by the inclusion of weather related covariates. The dependence between frequency and size of lightning-caused fires is found to be negative, indicating that an increase in the number of expected fires is associated with a decrease in the expected size of those fires, possibly due to the rainy conditions necessary for an increase in lightning. Person-caused fires were found to be positively dependent, possibly due to dry weather increasing human activity as well as the amount of dry few. For a test for independence, we perform a power study and find that simply checking whether zero is in the credible interval of the posterior of the linking parameter is as powerful as more complicated tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390917PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271904PLOS

Publication Analysis

Top Keywords

size fires
12
fires
10
dependence frequency
8
frequency severity
8
shared random
8
random effects
8
wildland fires
8
frequency size
8
appropriate model
8
fires associated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!