The NAD kinase (NADK) is the only known enzyme capable of phosphorylating NAD(H) to NADP(H) and therefore it plays a crucial role in maintaining NAD(P)(H) homeostasis. All domains of life contain at least one NADK gene, and the commonly investigated isoforms have been measured, or assumed, to be functionally irreversible. In 1977, the kinetics of native pigeon liver NADK were thoroughly investigated, and it was reported to exhibit reversible activity, such that ATP and NAD can be formed from ADP and NADP. We hypothesized that the reverse activity of the pigeon enzyme may enable compensation of the high picolinic acid carboxylase (PC) activity present in pigeon livers, which inhibits NAD biosynthesis from dietary tryptophan. Here, we report the characterization of four recombinantly expressed NADKs and explore their reversible activities. Duck and cat livers have higher PC activity than pigeon livers, and the recombinant duck and cat NADKs exhibit high activity in the reverse direction. The human NADK has an affinity for NAD that is ∼600 times higher than the pigeon, duck, and cat isoforms, and we conclude that NAD serves as a potent product inhibitor for the reverse activity of the human NADK, which accounts for the observed irreversible behavior. These results demonstrate that while all four NADKs are reversible, the reverse activity of the human enzyme alone is impeded via product inhibition. This mechanism─the conversion of a reversible to a unidirectional reaction by product inhibition─may be valuable in future metabolic engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.2c00386 | DOI Listing |
Mol Neurobiol
January 2025
School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.
Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Molecular Biology and Genetics, Aarhus, Denmark.
The C3 protein is the central molecule within the complement system and undergoes proteolytic activation to C3b in the presence of pathogens. Pattern-independent activation of C3 also occurs via hydrolysis, resulting in C3(HO), but the structural details of C3 hydrolysis remain elusive. Here we show that the conformation of the C3(HO) analog, C3MA, is indistinguishable from C3b.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.
Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).
Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.
Langmuir
January 2025
CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!