Hippocampal neurogenesis is impaired in Alzheimer's disease (AD) patients and familial Alzheimer's disease (FAD) mouse models. However, it is unknown whether new neurons play a causative role in memory deficits. Here, we show that immature neurons were actively recruited into the engram following a hippocampus-dependent task. However, their recruitment is severely deficient in FAD. Recruited immature neurons exhibited compromised spine density and altered transcript profile. Targeted augmentation of neurogenesis in FAD mice restored the number of new neurons in the engram, the dendritic spine density, and the transcription signature of both immature and mature neurons, ultimately leading to the rescue of memory. Chemogenetic inactivation of immature neurons following enhanced neurogenesis in AD, reversed mouse performance, and diminished memory. Notably, AD-linked App, ApoE, and Adam10 were of the top differentially expressed genes in the engram. Collectively, these observations suggest that defective neurogenesis contributes to memory failure in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399756PMC
http://dx.doi.org/10.1084/jem.20220391DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
immature neurons
12
spine density
8
neurons
7
memory
5
augmenting neurogenesis
4
neurogenesis rescues
4
rescues memory
4
memory impairments
4
impairments alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!