3-dimention (3D) Cube isotropic volumetric magnetic resonance imaging (MRI) facilitates comprehensive recognition of microinfarcts while it takes long scanning time. HyperSense compressed sensing is an emerging technique for accelerating MRI acquisition to reduce scanning time, while its application along with 3D Cube MRI for microinfarcts is seldom reported. Therefore, this study aimed to investigate the efficiency of 3D Cube FLAIR plus HyperSense compressed sensing technique versus conventional 2-dimention (2D) FLAIR scanning in the detection of cortical microinfarcts (CMIs). Totally 59 patients with cerebrovascular disease were enrolled then scanned by 3D Cube FLAIR plus HyperSense compressed sensing and 2D T2WI FLAIR sequences. The image quality scores, signal-to-noise ratio (SNR) for gray matter (GM), SNR for white matter (WM), their contrast-to-noise ratio (WM-to-GM CNR), detected number of CMIs were evaluated. 3D Cube FLAIR plus HyperSense showed a dramatically increased scores of uniformity, artifact, degree of lesion displacement, and overall image quality compared to 2D T2WI FLAIR. Meanwhile, it exhibited similar SNRwm and SNRgm, but a higher WM-to-GM contrast-to-noise ratio compared with 2D T2WI FLAIR. Furthermore, the scanning time of 3D Cube FLAIR plus HyperSense and 2D T2WI FLAIR were both set as 2.5 minutes. Encouragingly, 244 CMIs were detected by 3D Cube FLAIR plus HyperSense, which was higher compared to 2D T2WI FLAIR (106 detected CMIs). 3D Cube FLAIR plus HyperSense compressed sensing is superior to 2D T2WI FLAIR scanning regarding image quality, spatial resolution, detection rate for CMIs; meanwhile, it does not increase the scanning time. These findings may contribute to early detection and treatment of stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387951PMC
http://dx.doi.org/10.1097/MD.0000000000028659DOI Listing

Publication Analysis

Top Keywords

cube flair
28
flair hypersense
28
t2wi flair
28
hypersense compressed
20
compressed sensing
20
flair scanning
16
image quality
16
scanning time
16
flair
14
compared t2wi
12

Similar Publications

The area postrema (AP) is a key circumventricular organ involved in the regulation of autonomic functions. Accurate identification of the AP via MRI is essential in neuroimaging but it is challenging. This study evaluated 3D FSE Cube T2WI, 3D FSE Cube FLAIR, and 3D DIR sequences to improve AP detection in patients with and without multiple sclerosis (MS).

View Article and Find Full Text PDF

Background: Cognitive impairment is commonly observed in hydrocephalus patients. Ventricular enlargement compresses brain parenchyma, especially the white matter (WM).

Purpose: To investigate whether the relationship between ventricular dilation and cognitive decline in hydrocephalus patients is mediated by WM alterations.

View Article and Find Full Text PDF

Background: Leptomeningeal enhancement (LME) has been described as a biomarker of meningeal inflammation in multiple sclerosis (MS).

Objective: The aim of this study was to (1) assess if LME is predictive of disability worsening in progressive MS (pMS) patients and (2) investigate the pathological substrates of LME in an independent post-mortem MS series.

Methods: In total, 115 pMS patients were imaged yearly with 1.

View Article and Find Full Text PDF

Background: Monte Carlo (MC) code FLUKA possesses widespread usage and accuracy in the simulation of particle beam radiotherapy. However, the conversion from computer-aided design (CAD) mesh format models to FLUKA readable geometries could not be implemented directly and conveniently. A simple method was required to be developed.

View Article and Find Full Text PDF

Objective: To investigate the feasibility of using noninvasive neuroimaging methods in visualizing and evaluating the clearance of the glymphatic-meningeal lymphatic system (GMLS) in patients with arteriosclerotic cerebral small-vessel disease (CSVD) and controls.

Methods: This observational study recruited patients with high-burden CSVD and controls (age 50-80 years). At multiple time points before and after intravenous administration of a contrast agent, three-dimensional (3D) brain volume T1-weighted imaging and 3D Cube T2-fluid attenuated inversion recovery imaging were performed to visualize and assess the clearance of the glymphatics and meningeal lymphatic vessels (mLVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!