The Effect of Infant Gastric Digestion on Human Maternal Milk Cells.

Mol Nutr Food Res

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

Published: October 2022

Scope: Human breast milk contains a variety of cell types that have potential roles in infant immunity and development. One challenge associates with defining the purpose(s) of milk cells in the infant is a poor understanding of the effect of digestion on cell fate.

Methods And Results: This study first demonstrates that milk cell death occurs after gastric digestion in mice. Then flow cytometry and RT-PCR are used to understand the mechanism of human milk cell death and quantify live cell types before and after simulated gastric digestion. This study finds that digestion in simulated gastric fluid for 30 min reduces cell viability from 72% to 27%, with most cell death is caused by the acidic pH. The primary mechanism of cell death is caspase-mediated apoptosis. The non-cellular components of milk offer only mild protection against cell death from stomach acid.

Conclusions: Gastric digestion does not select for a specific resilient cell population to survive-most cell types die in equal proportions in the gastric environment. Taken together, these results provide a foundation with which to understand the fate of human breast milk cells in the infant's intestine and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532377PMC
http://dx.doi.org/10.1002/mnfr.202200090DOI Listing

Publication Analysis

Top Keywords

cell death
20
gastric digestion
16
milk cells
12
cell types
12
cell
11
human breast
8
breast milk
8
milk cell
8
simulated gastric
8
milk
7

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Phototherapy - which includes photothermal therapy (PTT) and photodynamic therapy (PDT) - has evoked interest as a promising cancer treatment modality on account of its noninvasiveness, spatiotemporal precision, and minimal side effects. C. Wang et al.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!