Giant Cell Tumor and Giant Cell Reparative Granuloma of Bone of the Head: CT and MR Imaging Findings.

Comb Chem High Throughput Screen

Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.

Published: March 2023

Background: This study aimed to determine the features and differentiation of Giant Cell Reparative Granuloma (GCRG) and Giant Cell Tumor (GCT) of the head on CT and MRI.

Methods: This retrospective study included six patients with histopathology-confirmed head GCRG and 5 patients with histopathology-confirmed head GCT. All images were independently reviewed by two radiologists. The growth pattern, bone changes, MRI signal intensity, enhancement patterns and other image features were recorded. All patients received CT scans and MR images.

Results: All the lesions were located centrally in the bone. Osteolytic bone destruction and expansive growth patterns were observed on CT images. Four of six cases broke the cortical bone with residual cortical bone, and the last two showed a thin cortex in GCRG. Five cases broke the cortical bone with residual cortical bone in GCT. There were enhancing septations in GCT lesions on contrast- enhanced T1-Weighted Images (T1WI) while enhancing septations were not present in GCRG cases. The size of GCT lesions was larger than that of GRCG. GCRG and GCT showed iso-low signals on T1WI and iso-high signals on T2-Weighted Images (T2WI). There was a case with cystic or necrotic lesions in each of the two types of lesions. Osteolytic bone destruction and expansive growth patterns were observed in GCTs and GCRGs.

Conclusion: The size of the GRCG lesion was smaller than that of the GCT. The presence of enhancing septations and the size of the lesion may distinguish GCTs from GCRG.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207325666220818124912DOI Listing

Publication Analysis

Top Keywords

giant cell
16
cortical bone
16
enhancing septations
12
bone
9
cell tumor
8
cell reparative
8
reparative granuloma
8
patients histopathology-confirmed
8
histopathology-confirmed head
8
osteolytic bone
8

Similar Publications

Unlabelled: Denosumab,a monoclonal IgG2 antibody directed against RANK-L,is used as a neoadjuvant therapy for inoperable or metastatic giant cell tumor of bone. Many side effects like as hypocalcemia during treatment and rarely severe hypercalcemia especially in children after discontinuation of denosumab occurred. The unpredictable onset and recurrent episodes of severe hypercalcemia increase the duration of hospitalization and the risk of complications.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.

Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.

View Article and Find Full Text PDF

Introduction: Giant basal cell carcinoma (GBCC) is a rare and aggressive subtype of basal cell carcinoma (BCC), characterized by a diameter of ≥5 cm and a potential for deep tissue invasion. This study aimed to present our experience with the surgical management of GBCC in the maxillofacial region, focusing on resection and immediate reconstruction strategies.

Methods: We conducted a retrospective analysis of 5926 patients with BCC in the maxillofacial region from 2010 to 2020, with a specific emphasis on 32 patients diagnosed with GBCC.

View Article and Find Full Text PDF

Histoplasmosis is a rarely reported clinical disease of equids in North America and is historically attributed to Histoplasma capsulatum var. capsulatum. This report details a case of intestinal histoplasmosis with lymphadenitis in an American Mammoth Jackstock donkey from Mississippi.

View Article and Find Full Text PDF

Giant unilamellar vesicles (GUVs) are ideal for studying cellular mechanisms due to their cell-mimicking morphology and size. The formation, stability, and immobilization of these vesicles are crucial for drug delivery and bioimaging studies. Separately, metal-organic frameworks (MOFs) are actively researched owing to their unique and varied properties, yet little is known about the interaction between MOFs and phospholipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!