In the precision medicine era, (prespecified) subgroup analyses are an integral part of clinical trials. Incorporating multiple populations and hypotheses in the design and analysis plan, adaptive designs promise flexibility and efficiency in such trials. Adaptations include (unblinded) interim analyses (IAs) or blinded sample size reviews. An IA offers the possibility to select promising subgroups and reallocate sample size in further stages. Trials with these features are known as adaptive enrichment designs. Such complex designs comprise many nuisance parameters, such as prevalences of the subgroups and variances of the outcomes in the subgroups. Additionally, a number of design options including the timepoint of the sample size review and timepoint of the IA have to be selected. Here, for normally distributed endpoints, we propose a strategy combining blinded sample size recalculation and adaptive enrichment at an IA, that is, at an early timepoint nuisance parameters are reestimated and the sample size is adjusted while subgroup selection and enrichment is performed later. We discuss implications of different scenarios concerning the variances as well as the timepoints of blinded review and IA and investigate the design characteristics in simulations. The proposed method maintains the desired power if planning assumptions were inaccurate and reduces the sample size and variability of the final sample size when an enrichment is performed. Having two separate timepoints for blinded sample size review and IA improves the timing of the latter and increases the probability to correctly enrich a subgroup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.202000345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!