Blumea lacera (Burm. f.) DC. is attracting scientific interest due to the diverse biological activities of its various parts and its use in folk medicine. The present study was undertaken to investigate the tissue-specific differential expression pattern of its total bioactive compounds. The study was further extended to whole plant phenolics profiling, in vitro enzyme inhibition activities, followed by in silico enzyme inhibition analysis to assess its potential as herbal medicine. The amount of total phenolics in different tissues was followed in decreasing order as old leaf, flower bud, root, young leaf, flower, old stem, and young stem, while that for the flavonoids was old leaf, root, young leaf, flower bud, flower, young stem, and old stem. This study identified rosmarinic acid, quercetin, and kaempferol in this plant for the first time. The solvent extracts demonstrated strong inhibition of lipase and tyrosinase activity, along with varying degrees of inhibition of acetylcholinesterase and butyrylcholinesterase activity. Among the detected compounds, ten displayed strong in silico binding affinities with the tested enzymes. The findings provide a new insight into further investigation of the medicinal potential of this species against obesity, neurological disorders, and aberrant skin color.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202200282 | DOI Listing |
Nat Prod Res
December 2024
Department of Chemistry, Faculty of Science, Birzeit University, Birzeit, Ramallah, Palestine.
is a wild edible, parietal, unisexual, perennial plant that grows in various parts of the Middle East, and frequently used in traditional Arabic Palestinian herbal medicine. The present review summarises information concerning including background information, historical records, phytochemical components, and biological activity which represents an important tool for further research studies. is thought to contain a wealth of rich bioactive compounds, such as terpinoids, polyphenols, flavonoids, and alkaloids.
View Article and Find Full Text PDFPlant Sci
December 2024
College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province. Electronic address:
2-methylguanosine is an eukaryote-specific modified nucleoside in transfer RNAs, and mG10 is catalyzed by Trm11-Trm112 protein complex in eukaryotic tRNAs. Here, we show that loss-of-function mutation of the Arabidopsis Trm11 homolog AtTRM11 resulted in mG deficiency associated with disturbed ribosome assembly and overall transcriptome changes, including genes involved in flowering regulation and plant-pathogen interaction. The attrm11 mutant showed phenotypes of enlarged rosette leaves and early flowering, as well as enhanced resistance to Pseudomonas bacterial infection.
View Article and Find Full Text PDFEvolution
December 2024
Department of Genetics, University of Georgia, Athens, GA 30602 USA.
Abiotic and biotic factors interact to influence phenotypic evolution; however, identifying the causal agents of selection that drive the evolution and expression of traits remains challenging. In a field common garden, we manipulated water availability and herbivore abundance across three years, and evaluated clinal variation in functional traits and phenology, plasticity, local adaptation, and selection using diverse accessions of the perennial forb, Boechera stricta. Consistent with expectations, drought stress exacerbated damage from herbivores.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China.
Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!