Case Studies Exemplifying the Transition to Animal Component-free Cell Culture.

Altern Lab Anim

Institute of Transfusion Medicine and Immunology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, 99045Heidelberg University, Mannheim, Germany.

Published: September 2022

Cell culture techniques are strongly connected with modern scientific laboratories and production facilities. Thus, choosing the most suitable medium for the cells involved is vital, not only directly to optimise cell viability but also indirectly to maximise the reliability of the experiments performed with the cells. Fetal bovine or calf serum (FBS or FCS, respectively) is the most commonly used cell culture medium supplement, providing various nutritional factors and macromolecules essential for cell growth. Yet, the use of FBS encompasses a number of disadvantages. Scientifically, one of the most severe disadvantages is the lot-to-lot variability of animal sera that hampers reproducibility. Therefore, transitioning from the use of these ill-defined, component-variable, inconsistent, xenogenic, ethically questionable and even potentially infectious media supplements, is key to achieving better data reproducibility and thus better science. To demonstrate that the transition to animal component-free cell culture is possible and achievable, we highlight three different scenarios and provide some case studies of each, namely: i) the adaptation of single cell lines to animal component-free culture conditions by the replacement of FBS and trypsin; ii) the adaptation of multicellular models to FBS-free conditions; and (iii) the replacement of FBS with human platelet lysate (hPL) for the generation of primary stem/stromal cell cultures for clinical purposes. By highlighting these examples, we aim to foster and support the global movement towards more consistent science and provide evidence that it is indeed possible to step out of the currently smouldering scientific reproducibility crisis.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02611929221117999DOI Listing

Publication Analysis

Top Keywords

cell culture
16
animal component-free
12
case studies
8
transition animal
8
cell
8
component-free cell
8
replacement fbs
8
culture
5
studies exemplifying
4
exemplifying transition
4

Similar Publications

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.

View Article and Find Full Text PDF

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!