Site-selective C-H alkylation of -inositol organic photoredox catalysis.

Chem Commun (Camb)

School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

Published: September 2022

Site-selective photoredox reactions with aromatic olefins enable direct alkylation of unprotected -inositol at C4. The efficacy of these reactions can be finely tuned by modifying the structures of HAT reagents. These reactions open the possibility of selective C-H alkylations of -inositol without the need for multi-step protection-deprotection strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc03569cDOI Listing

Publication Analysis

Top Keywords

site-selective c-h
4
c-h alkylation
4
alkylation -inositol
4
-inositol organic
4
organic photoredox
4
photoredox catalysis
4
catalysis site-selective
4
site-selective photoredox
4
photoredox reactions
4
reactions aromatic
4

Similar Publications

Complementary methods toward the selective functionalization of indole and oxindole frameworks employing an alternative strategy in heteroaryl C-H functionalizations are presented herein. This work focuses on a catalyst-controlled, site selective C-H activation/functionalization of 3-acyl indoles, wherein an amide serves as a robust and versatile directing group capable of undergoing concomitant 1,2-acyl translocation/C-H functionalization in the presence of a Rh/Ag co-catalysts to provide the cross-coupled adducts in high yields. In contrast, the use of Ir/Ag catalysts subverted the 1,2-acyl migration to afford the corresponding C2-functionalized products in good to excellent yields.

View Article and Find Full Text PDF

We present a highly selective protocol for the benzylation of -aryl amides. This method offers mild conditions, excellent site specificity, and scalability, enabling the synthesis of diarylmethane amides and dibenzoazepines. The protocol allows for one-pot diagonal dibenzylation of dianilides, creating valuable precursors for pharmaceutically active compounds and addressing limitations in current direct C-H activation methodologies.

View Article and Find Full Text PDF

A site-selective functionalization of a C(sp)-H bond was achieved in the presence of an intrinsically more reactive C(sp)-H bond by controlling the orientation of a directing group via a photo-induced E/Z isomerization of an oxime ether. By combining E/Z isomerization and an electron deficient Cp*Ir(III) catalyst, the scope of oxime ethers in C(sp)-H functionalization was successfully expanded. Based on this strategy, the order of C-H activation was switchable and successive C(sp)-H/C(sp)-H and C(sp)-H/C(sp)-H double functionalizations were accomplished to construct densely functionalized structures.

View Article and Find Full Text PDF

Single-Carbon Insertion into Single C-C Bonds with Diazirines.

J Am Chem Soc

January 2025

Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain.

A novel platform for the skeletal editing of single C-C bonds via a single-carbon insertion has been developed using diazirines. This strategy involves the photogeneration of arylchlorocarbenes as carbynoid species that undergo site-selective carbene insertion into tertiary C-H bonds and a subsequent Wagner-Meerwein rearrangement promoted by a silver salt. Our skeletal editing strategy based on a formal selective carbyne C-C bond insertion has been demonstrated in six core-to-core conversions, including linear and cyclic benzylic substrates, alkanes and late-stage functionalizations.

View Article and Find Full Text PDF

The position-selective C-H bond activation of arenes has long been a challenging topic. Herein, we report an expedient ruthenium-electrocatalyzed site-selective -C-H phosphorylation of arenes driven by electrochemical hydrogen evolution reaction (HER), avoiding stoichiometric amounts of chemical redox-waste products. This strategy paved the way to achieve unprecedented ruthenaelectro-catalyzed -C-H phosphorylation with excellent levels of site-selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!