Light-assisted conversion of CO into liquid fuels is one of several possible approaches to combating the rise of carbon dioxide emissions. Unfortunately, there are currently no known materials that are efficient, selective, or active enough to facilitate the photocatalytic CO reduction reaction (CORR) at an industrial scale. In this work, we employ density functional theory to explore potential tellurium-containing photocathodes for the CORR by observing trends in adsorption properties arising from over 350 *H, 200 *CO, and 110 *CHO surface-adsorbate structures spanning 39 surfaces of 11 materials. Our results reveal a scaling relationship between *CHO and *H chemisorption energies and charge transfer values, while the scaling relation (typically found in transition metals) between *CO and *CHO adsorption energies is absent. We hypothesize the scaling relation between *H and *CHO to be related to the lone electron located on the bonding carbon atom, while the lack of scaling relation in *CO we attribute to the ability of the lone pair on the C atom to form multiple bonding modes. We compute two predominant orbital-level interactions in the *CO-surface bonds (either using s or p orbitals) in addition to bonding modes involving both σ and π interactions using the Crystal Orbital Hamiltonian Population analysis. We demonstrate that bonds involving the C s orbital are more chemisorptive than the C p orbitals of CO. In general, chemisorption trends demonstrate decreased *H competition with respect to *CO adsorption and enhanced *CHO stability. Finally, we uncover simple element-specific design rules with Te, Se, and Ga sites showing increased competition and Zn, Yb, Rb, Br, and Cl sites showing decreased competition for hydrogen adsorption. We anticipate that these trends will help further screen these materials for potential CORR performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377373 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.2c04810 | DOI Listing |
Phys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFJAMA Cardiol
January 2025
National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Hospital, London, United Kingdom.
Importance: Patients with transthyretin (ATTR) cardiac amyloid infiltration are increasingly diagnosed at earlier disease stages with no heart failure (HF) symptoms and a wide range of cardiac amyloid infiltration.
Objective: To characterize the clinical phenotype and natural history of asymptomatic patients with ATTR cardiac amyloid infiltration.
Design, Setting, And Participants: This cohort study analyzed data of all patients at 12 international centers for amyloidosis from January 1, 2008, through December 31, 2023.
Acta Neurol Belg
January 2025
The Department of Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.
Parkinson's disease (PD) is characterized by motor and non-motor symptoms, including olfactory dysfunction. Prior studies have shown that olfaction deteriorates with disease progression, however fluctuations in olfaction and related PD symptoms have been less explored. This study aimed to investigate correlations between changes in odor identification ability and PD symptoms.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
Purpose Of Review: The use of stem cell therapy is a rapidly evolving and progressing frontier of science that has been used to treat illnesses such as malignancies, immunodeficiencies, and metabolic syndromes. This review aims to give an overview of the use of stem cell therapy in the treatment of pain caused by diabetic neuropathy, osteoarthritis, and other spinal cord pathologies.
Recent Findings: Pain is defined as a generalized or localized feeling of distress related to a physical or emotional stimulus and can be caused by a multitude of pathologies.
Semin Immunopathol
January 2025
Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!