Sexually dimorphic transcriptional programs of early-phase response in regenerating peripheral nerves.

Front Mol Neurosci

Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.

Published: August 2022

The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378824PMC
http://dx.doi.org/10.3389/fnmol.2022.958568DOI Listing

Publication Analysis

Top Keywords

sexually dimorphic
20
transcriptional changes
8
axonal transport
8
dimorphic regulation
8
sexually
5
transcriptional
4
dimorphic transcriptional
4
transcriptional programs
4
early-phase
4
programs early-phase
4

Similar Publications

Antennal sensilla variability among castes and sexes in the leaf-cutter ant Acromyrmex subterraneus subterraneus.

Protoplasma

January 2025

Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.

Insect antennae play a crucial role in communication, acting as receptors for both chemical and physical cues. This sensory reception is facilitated by specialized cuticular structures known as sensilla, which exhibit diverse morphologies and functions. In ants, caste polymorphism and sexual dimorphism manifest in antennal structure.

View Article and Find Full Text PDF

Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.

View Article and Find Full Text PDF

Background: Glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies support a dynamic shift in excitatory signaling with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. The majority of previous studies have relied heavily on male physiology when determining these alterations in AD mouse models.

View Article and Find Full Text PDF

Background: The X-chromosome remains largely unexplored in Alzheimer's disease (AD). We performed the first, stratified X-wide association study (XWAS) of AD to chart the role of X-chromosome genetic variation in AD sexual dimorphism and heterogeneity of APOE*4-related AD risk.

Method: The study overview is shown in Figure 1A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!