MiR-138-5p Targets MACF1 to Aggravate Aging-related Bone Loss.

Int J Biol Sci

Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

Published: August 2022

Senile osteoporosis is one of the major health problems in an aging society. Decreased bone formation due to osteoblast dysfunction may be one of the causes of aging-related bone loss. With increasing evidence suggesting that multiple microRNAs (miRNAs) play important roles in osteoblast function, the relationship between miRNAs and senile osteoporosis has become a popular research topic. Previously, we confirmed that mechanoresponsive miR-138-5p negatively regulated bone anabolic action. In this study, the miR-138-5p level was found to be negatively correlated with BMD and osteogenic markers in bone specimens of senile osteoporotic patients by bioinformatic analysis and experimental verification. Furthermore, high miR-138-5p levels aggravated the decrease of aged osteoblast differentiation and led to worse bone loss in aged osteoblastic miR-138-5p transgenic mice . We also previously identified that the target of miR-138-5p, microtubule actin cross-linking factor 1 (MACF1), could attenuate senile osteoporosis. Here, miR-138-5p was demonstrated to regulate aged osteoblast differentiation by targeting MACF1. Finally, the therapeutic inhibition of miR-138-5p counteracted the decrease in bone formation and aging-related bone loss in aged mice. Overall, our results highlight the crucial roles and the molecular mechanism of miR-138-5p in aging-related bone loss and may provide a powerful therapeutic target for ameliorating senile osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9379396PMC
http://dx.doi.org/10.7150/ijbs.71411DOI Listing

Publication Analysis

Top Keywords

bone loss
20
aging-related bone
16
senile osteoporosis
16
mir-138-5p
9
bone
9
bone formation
8
aged osteoblast
8
osteoblast differentiation
8
loss aged
8
loss
5

Similar Publications

Role of Trained Immunity in Heath and Disease.

Curr Cardiol Rep

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.

Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.

Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.

View Article and Find Full Text PDF

Objectives: The goal of this systematic review was to critically appraise the existing evidence evaluating osteoporosis' effects on dental implant osseointegration and survival rate.

Data Source: A search was conducted in two databases, PubMed/MEDLINE and Scopus, until October 2024, using the keywords 'osteoporosis,' 'osteopenia,' 'osseointegration,' and 'dental implants'. The inclusion criteria were clinical studies that evaluated the implant placement, complications, and osseointegration results in patients with osteoporosis; literature reviews and clinical studies addressing the outcome were considered; and articles written in English and published since 2000.

View Article and Find Full Text PDF

Single-cell sequencing of lineage negative (Lin-) cells from patients with myelodysplastic syndromes (MDS) revealed a reduction in ferritin heavy chain 1 (FTH1) levels, yet the significance of this decrease in FTH1 in the pathophysiology of MDS remains unclear. In this study, we evaluated the role of FTH1 in patients with MDS. The mRNA expression of FTH1 in GlycoA nucleated erythrocytes from MDS patients was significantly lower than that in control group.

View Article and Find Full Text PDF

Aim: This prospective cohort study aimed to evaluate the incidence and risk/protective factors of peri-implantitis over time.

Methods: A university-representative cohort was evaluated at baseline and after a mean follow-up time of 3.9 years.

View Article and Find Full Text PDF

Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!