Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199019PMC
http://dx.doi.org/10.5114/aic.2022.116246DOI Listing

Publication Analysis

Top Keywords

simultaneous spontaneous
4
spontaneous dissection
4
dissection carotid
4
carotid left
4
left vertebral
4
vertebral artery
4
artery spontaneous
4
spontaneous coronary
4
coronary artery
4
artery dissection
4

Similar Publications

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.

View Article and Find Full Text PDF

Feasibility of Mental Health Triage Call Priority Prediction Using Machine Learning.

Nurs Rep

December 2024

Mental Health and Specialist Services, West Moreton Health, Brisbane, QLD 4076, Australia.

Background: Optimum efficiency and responsiveness to callers of mental health helplines can only be achieved if call priority is accurately identified. Currently, call operators making a triage assessment rely heavily on their clinical judgment and experience. Due to the significant morbidity and mortality associated with mental illness, there is an urgent need to identify callers to helplines who have a high level of distress and need to be seen by a clinician who can offer interventions for treatment.

View Article and Find Full Text PDF

Introduction: While most head movements in daily life are active, most tools used to assess vestibular deficits rely on passive head movements. A single gain value is not sufficient to quantify gaze stabilization efficiency during active movements in vestibular deficit patients. Moreover, during active gaze shifts, anticipatory mechanisms come into play.

View Article and Find Full Text PDF

Dual action of non-metal doped CN and TiCT heterojunction enhances the catalytic activity of electrochemical simultaneous oxidation of hydrogen peroxide and peroxymonosulfate:A theoretical study.

Environ Res

December 2024

Environment Research Institute, Shandong University, Qingdao, 266237, PR China; School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada. Electronic address:

Electrochemical advanced oxidation processes (EAOPs) are energy-efficient methods for generating activated radicals like HO and SO, which enable the degradation of difficult-to-mineralize chlorinated organic compounds. This study explored the catalytic activity and reaction mechanism of EAOPs under a dual strategy involving non-metal doped CN (X@CN (X = O, F, Si)) and a heterostructured build (X@CN/TiCT) using first principles calculation. The non-metal doping and the heterojunction construction can make HO and PMS spontaneously adsorb (E < 0), with negative Gibbs free energy for their oxidation to HO and SO, significantly enhancing catalytic activity.

View Article and Find Full Text PDF

Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!