Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, β, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826390 | PMC |
http://dx.doi.org/10.1002/anie.202207590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!