Disaggregation as an interaction mechanism among intestinal bacteria.

Biophys J

Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon; Institute of Molecular Biology, University of Oregon, Eugene, Oregon. Electronic address:

Published: September 2022

The gut microbiome contains hundreds of interacting species that together influence host health and development. The mechanisms by which intestinal microbes can interact, however, remain poorly mapped and are often modeled as spatially unstructured competitions for chemical resources. Recent imaging studies examining the zebrafish gut have shown that patterns of aggregation are central to bacterial population dynamics. In this study, we focus on bacterial species of genera Aeromonas and Enterobacter. Two zebrafish gut-derived isolates, Aeromonas ZOR0001 (AE) and Enterobacter ZOR0014 (EN), when mono-associated with the host, are highly aggregated and located primarily in the intestinal midgut. An Aeromonas isolate derived from the commensal strain, Aeromonas-MB4 (AE-MB4), differs from the parental strain in that it is composed mostly of planktonic cells localized to the anterior gut. When challenged by AE-MB4, clusters of EN rapidly fragment into non-motile, slow-growing, dispersed individual cells with overall abundance two orders of magnitude lower than the mono-association value. In the presence of a certain set of additional gut bacterial species, these effects on EN are dampened. In particular, if AE-MB4 invades an already established multi-species community, EN persists in the form of large aggregates. These observations reveal an unanticipated competition mechanism based on manipulation of bacterial spatial organization, namely dissolution of aggregates, and provide evidence that multi-species communities may facilitate stable intestinal co-existence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515126PMC
http://dx.doi.org/10.1016/j.bpj.2022.08.010DOI Listing

Publication Analysis

Top Keywords

bacterial species
8
disaggregation interaction
4
interaction mechanism
4
intestinal
4
mechanism intestinal
4
intestinal bacteria
4
gut
4
bacteria gut
4
gut microbiome
4
microbiome hundreds
4

Similar Publications

Gonadal miRNomes and transcriptomes in infected fish reveal sexually dimorphic patterns of the immune response.

Funct Integr Genomics

January 2025

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.

Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.

View Article and Find Full Text PDF

Pantoea agglomerans is one of four Pantoea species reported in the USA to cause bacterial rot of onion bulbs. However, not all P. agglomerans strains are pathogenic to onion.

View Article and Find Full Text PDF

G-quadruplex structures in 16S rRNA regions correlate with thermal adaptation in prokaryotes.

Nucleic Acids Res

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States.

G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation.

View Article and Find Full Text PDF

This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.

View Article and Find Full Text PDF

Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!