A novel iron-mediated nitrogen removal technology of ammonium oxidation coupled to nitrate/nitrite reduction: Recent advances.

J Environ Manage

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.

Published: October 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115779DOI Listing

Publication Analysis

Top Keywords

novel iron-mediated
4
iron-mediated nitrogen
4
nitrogen removal
4
removal technology
4
technology ammonium
4
ammonium oxidation
4
oxidation coupled
4
coupled nitrate/nitrite
4
nitrate/nitrite reduction
4
reduction advances
4

Similar Publications

Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.

Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.

View Article and Find Full Text PDF

The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Biological charcoal loaded with nano zero-valent iron (nZVI@BC) was synthesized using the bioleaching co-pyrolysis method. This study analyzed the formulation sequence of nZVI@BC and its influence on chromium elimination from water and soil, along with the involved mechanisms. The bioleaching method facilitated ionic iron incorporation onto biochar in the form of yellow potassium ferroalum compounds, which were reduced to Fe by H, CO, and CH generated during biomass co-pyrolysis.

View Article and Find Full Text PDF

Self-cleaned surface of vanadium boride for long-lasting and boosted Fenton oxidation.

J Hazard Mater

January 2025

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.

Coupling extra electron supply with iron-mediated advanced oxidation processes (AOPs) is an efficient strategy for long-lasting oxidation of organic contaminants in environmental remediation. Many subsequent attempts have been made, such as homogeneous catalysts and metal catalysts, of which secondary organic pollution and surface passivation layers limit their application. In this work, metal borides as co-catalysts can efficiently accelerate the Fenton reaction by firmly sacrificing electrons to Fe(III) reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!