Deep penetrating nevus with clear-cell changes.

J Cutan Pathol

Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.

Published: November 2022

Download full-text PDF

Source
http://dx.doi.org/10.1111/cup.14311DOI Listing

Publication Analysis

Top Keywords

deep penetrating
4
penetrating nevus
4
nevus clear-cell
4
clear-cell changes
4
deep
1
nevus
1
clear-cell
1
changes
1

Similar Publications

Facial Thread Lifting Complications: Underlying Causes.

J Craniofac Surg

December 2024

Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seodaemun-gu.

Introduction: Thread lifting procedures are becoming increasingly popular for facial rejuvenation. However, various complications can arise during these procedures, many of which are influenced by anatomic factors.

Methods: In this section, the authors explore the potential side effects associated with thread lifting and emphasize the anatomic structures that require careful attention.

View Article and Find Full Text PDF

Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design π-extension and donor-acceptor interactions.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Effective delivery of therapeutic agents for solid tumour treatment is impeded by multiple obstacles, such as aberrant interstitial fluid pressure and high density of the extracellular matrix, which causes impaired penetration to deep avascular tumour tissue that exists in a hypoxic immune cold environment. Only limited tumoricidal effects have been achieved with traditional nanomedicine due to its inefficient penetration and the multiple resistant effects that exist in the tumour microenvironment. Herein, a new chemo-dynamic immunotherapy (CDIT) is proposed based on a transcytosis tumour oxygenator (MnP) with effective chemo-dynamic effects.

View Article and Find Full Text PDF

Lipid Nanoparticle Formulations for the Skin Delivery of Cannabidiol.

Pharmaceutics

November 2024

Universidad Nacional de Hurlingham (UNAHUR), Secretaría de Investigación, Laboratorio de Nanosistemas de Aplicación Biotecnológica (LANSAB), Hurlingham 1688, Buenos Aires, Argentina.

The aims of this work were to formulate cannabidiol in different lipid carriers for skin delivery after topical application and to study their stability, interaction with the skin, and antibacterial activity. Solid lipid nanoparticles and nanostructured lipid carriers loaded with cannabidiol were prepared and characterized in terms of their physicochemical properties, colloidal stability, protection of the antioxidant capacity of cannabidiol, as well as their retention over time. Skin penetration was assessed using an in vitro model with human skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!