Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle is an efficacious therapy for treatment-resistant depression, providing rapid antidepressant effects. In this study, we use F-fluorodeoxyglucose-positron emission tomography (PET) to identify brain metabolic changes over 12 months post-DBS implantation in ten of our patients, compared to baseline. The primary outcome measure was a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score, which was interpreted as a response. Deterministic fiber tracking was used to individually map the target area; probabilistic tractography was used to identify modulated fiber tracts modeled using the cathodal contacts. Eight of the ten patients included in this study were responders. PET imaging revealed significant decreases in bilateral caudate, mediodorsal thalamus, and dorsal anterior cingulate cortex metabolism that was evident at 6 months and continued to 12 months post surgery. At 12 months post-surgery, significant left ventral prefrontal cortical metabolic decreases were also observed. Right caudate metabolic decrease at 12 months was significantly correlated with mean MADRS reduction. Probabilistic tractography modeling revealed that such metabolic changes lay along cortico-limbic nodes structurally connected to the DBS target site. Such observed metabolic changes following DBS correlated with clinical response provide insights into how future studies can elaborate such data to create biomarkers to predict response, the development of which likely will require multimodal imaging analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-022-01726-0DOI Listing

Publication Analysis

Top Keywords

metabolic changes
16
brain metabolic
8
clinical response
8
medial forebrain
8
forebrain bundle
8
deep brain
8
brain stimulation
8
treatment-resistant depression
8
ten patients
8
probabilistic tractography
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!