Most cullin-RING ubiquitin ligases (CRLs) form homologous assemblies between a neddylated cullin-RING catalytic module and a variable substrate-binding receptor (for example, an F-box protein). However, the vertebrate-specific CRL7 is of interest because it eludes existing models, yet its constituent cullin CUL7 and F-box protein FBXW8 are essential for development, and CUL7 mutations cause 3M syndrome. In this study, cryo-EM and biochemical analyses reveal the CRL7 assembly. CUL7's exclusivity for FBXW8 among all F-box proteins is explained by its unique F-box-independent binding mode. In CRL7, the RBX1 (also known as ROC1) RING domain is constrained in an orientation incompatible with binding E2~NEDD8 or E2~ubiquitin intermediates. Accordingly, purified recombinant CRL7 lacks auto-neddylation and ubiquitination activities. Instead, our data indicate that CRL7 serves as a substrate receptor linked via SKP1-FBXW8 to a neddylated CUL1-RBX1 catalytic module mediating ubiquitination. The structure reveals a distinctive CRL-CRL partnership, and provides a framework for understanding CUL7 assemblies safeguarding human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507964PMC
http://dx.doi.org/10.1038/s41594-022-00815-6DOI Listing

Publication Analysis

Top Keywords

catalytic module
8
f-box protein
8
crl7
5
structure crl7
4
crl7 reveals
4
reveals coupling
4
coupling cul1-rbx1/roc1
4
cul1-rbx1/roc1 multi-cullin-ring
4
multi-cullin-ring e3-catalyzed
4
e3-catalyzed ubiquitin
4

Similar Publications

Efficient CO Electrocarboxylation Using Dye-Sensitized Photovoltaics.

Molecules

December 2024

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

This paper presents the solar-driven electrocarboxylation of 2-bromopyridine (2-BP) with CO into high-value-added chemicals 2-picolinic acid (2-PA) using dye-sensitized photovoltaics under simulated sunlight. Using three series-connected photovoltaic modules and an Ag electrode with excellent catalytic performance, a Faraday efficiency () of 33.3% is obtained for 2-PA under mild conditions.

View Article and Find Full Text PDF

Toward Hyphenated Infrared and Raman Spectroscopies in Interfacial Electrochemistry.

Anal Chem

January 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

To address the pressing demand for hyphenated characterization of the electrode-electrolyte interfaces at the molecular level, we report herein a technical note to demonstrate the hyphenation of electrochemical surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). The core setup incorporates a top-down configured Raman optic fiber head loaded on a 3-dimension positioning module and a bottom-up configured attenuated total reflection infrared spectroscopy (ATR-IR) spectroelectrochemical cell accommodated in a custom-designed optical accessory. The feasibility of this integrated design is initially validated by the simultaneous measurement of two model systems, namely, potential dependent adsorption of pyridine on a Au film electrode and the CO reduction reaction on a Cu film electrode by SEIRAS and SHINERS, yielding distinct and complementary spectral information.

View Article and Find Full Text PDF

Background: The swift expansion of the invasive malaria vector throughout Africa presents a major challenge to malaria control initiatives. Unlike the native African vectors, thrives in urban settings and has developed resistance to multiple classes of insecticides, including pyrethroids, organophosphates, and carbamates.

Methods: Insecticide susceptibility tests were performed on field-collected mosquitoes from Awash Sebac Kilo, Ethiopia, to assess insecticide resistance levels.

View Article and Find Full Text PDF

DNAzyme-mediated isothermal catalytic hairpin assembly for rapid and enzyme-free amplified detection of lead(Ⅱ) ion.

J Hazard Mater

January 2025

Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306,  China; Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The detection of heavy metal ions, particularly lead (Pb²⁺), in environmental samples is crucial for public health and safety. Current nucleic acid signal amplification methods for Pb²⁺ detection often rely on biological enzymes and are limited in applicability due to high costs, prolonged detection times, and nonspecific adsorption. In this study, we introduce an enzyme-free, DNAzyme-mediated isothermal catalytic hairpin assembly (DMICHA) assay, which combines a DNAzyme-based Pb²⁺ recognition module with a signal amplification process utilizing isothermal catalytic hairpin assembly (CHA).

View Article and Find Full Text PDF

Modular cascade with engineered HpaB for efficient synthesis of hydroxytyrosol.

Bioorg Chem

January 2025

College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108 China. Electronic address:

Hydroxytyrosol, a naturally occurring chemical with antioxidant and antiviral properties, is widely used in the nutrition, pharmaceutical, and cosmetic industries. In the present study, a modularized cascade composed of Modules 1 and 2 was designed and implemented to convert l-tyrosine to hydroxytyrosol. Module 1 was a four-enzymatic cascade for converting l-tyrosine to tyrosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!