Competition in drug binding and … the race to equilibrium.

Fundam Clin Pharmacol

Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.

Published: February 2023

Binding kinetics has become a popular topic in pharmacology due to its potential contribution to the selectivity and duration of drug action. Yet, the overall kinetic aspects of complex binding mechanisms are still merely described in terms of elaborate algebraic equations. Interestingly, it has been recommended some 10 years ago to examine such mechanisms in terms of binding fluxes instead of the conventional rate constants. Alike the velocity of product formation in enzymology, those fluxes refer to the velocity by which one target species converts into another one. Novel binding flux-based approaches are utilized to get a better visual insight into the "competition" between two drugs/ligands for a single target as well as between induced fit- and conformational selection pathways for a single ligand within a thermodynamic cycle. The present data were obtained by differential equation-based simulations. Early on, the ligand-binding steps "race" to equilibrium (i.e., when their forward and reverse fluxes are equal) at their individual pace. The overall/global equilibrium is only reached later on. For the competition association assays, this parting might produce a transient "overshoot" of one of the bound target species. A similar overshoot may also show up within a thermodynamic cycle and, at first glance, suggest that the induced fit pathway dominates. Yet, present findings show that under certain circumstances, it could rather be the other way round. Novel binding flux-based approaches offer visually attractive insights into crucial aspects of "complex" binding mechanisms under non-equilibrium conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/fcp.12824DOI Listing

Publication Analysis

Top Keywords

binding mechanisms
8
target species
8
novel binding
8
binding flux-based
8
flux-based approaches
8
thermodynamic cycle
8
binding
7
competition drug
4
drug binding
4
binding …
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!