Vermicomposting leads to more abundant microplastics in the municipal excess sludge.

Chemosphere

Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China. Electronic address:

Published: November 2022

Municipal excess activated sludge is not only an important reservoir of microplastics particles, but is also a vehicle of entry of microplastics into the environments as soil amendments or organic fertilizer. Vermicomposting is a cost-effective technology for sludge valorization. However, it is not clear whether vermicomposting affects the occurrence of microplastics in residual sludge. Here, the variation of microplastics (0.05-5 mm) in sludge, including the abundance, type, size, and morphology, before and after vermicomposting by epigeic earthworms under different temperature conditions (15 °C, 20 °C and 25 °C) were investigated by micro Fourier Transform Infrared Spectroscopy (μ-FTIR) and Scanning Electronic Microscopy (SEM). More abundant (over 10 particles ∙kg (dry weight)), and smaller microplastics (over 60% in total with 0.05-0.5 mm) in the treated sludge via earthworms were observed compared to the raw sludge. The increment of vermicomposting temperature was more obvious (p < 0.05) for the enrichment of the microplastics, especially for polyethylene particle. Gizzard grinding and microbial digestion in the gut of earthworms may contribute to the fragment of microplastics. The present study suggests that the sludge-sourced vermicompost is still an important hotspot of microplastics, posing a potential threat to the receiving environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136042DOI Listing

Publication Analysis

Top Keywords

municipal excess
8
sludge
7
microplastics
6
vermicomposting
5
vermicomposting leads
4
leads abundant
4
abundant microplastics
4
microplastics municipal
4
excess sludge
4
sludge municipal
4

Similar Publications

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.

Water Res X

May 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.

Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.

View Article and Find Full Text PDF

Mechanisms of Copper-Induced Autophagy and Links with Human Diseases.

Pharmaceuticals (Basel)

January 2025

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.

As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.

View Article and Find Full Text PDF

The Positive Regulatory Effect of DBT on Lipid Metabolism in Postpartum Dairy Cows.

Metabolites

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.

Background/objectives: The transition from a non-lactating to a lactating state is a critical period for lipid metabolism in dairy cows. Danggui Buxue Tang (DBT), stimulating energy metabolism, ameliorates diseases related to lipid metabolism disorders and is expected to be an effective supplement for alleviating excessive lipid mobilisation in periparturient dairy cows. This study aimed to investigate the effects of supplemental DBT on serum biochemical indices, faecal microbial communities, and plasma metabolites in dairy cows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!