Membrane-aerated bacterial-algal biofilm reactor (MABAR) is an emerging and novel technology in recent years, which has been attracting increasing attention due to its cost-effectiveness and superior removal performance of pollutants by versatile removal pathways in symbiotic bacterial-algal biofilm. However, the wider application of MABAR is hindered by the dilemma of insufficient algae biomass. In this study, an MABAR under natural sunlight was developed and operated for 160 d to access the feasibility of enhancing algae proliferation by natural lighting. Results showed that the MABAR with natural sunlight (nMABAR) demonstrated better performance of pollutants removal. High removal efficiencies of organic matter and NH-N in nMABAR were 90 % and 92 %, respectively. In particular, the removal efficiency of TN in nMABAR, under less aeration, was up to 80 %, which was 15 % higher than the control reactor. The Chlorophyll-a content indicated that natural sunlight facilitated to algae growth in MABAR, and algae assimilation might be the dominant contributor to NH-N removal. Moreover, there were microbial shifts in bacterial-algal biofilm in a response to the natural lighting, the nMABAR uniquely possessed a bacterial phylotype termed Thiocapsa, which could play an important role in bacterial nitrification. Algal phylotype Chlorophyceae significantly contributed to pollutants removal and synergistic relationship with bacteria. In addition, the superb performance of nMABAR under less aeration condition suggested that abundant algae were capable of supplying enough O for the system. These results provided insight into the natural lighting on algae-bacteria synergistic growth and cost-effective operation strategy for MABAR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158063 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.
Photoswitchable fluorescent materials have gained significant attention for their potential in advanced information encryption and anti-counterfeiting applications. However, the common use of UV light to trigger the isomerization processes leads to photobleaching and poor fatigue resistance. Visible-light-driven fluorescent photoswitches are highly desirable, but achieving high cyclization yield remains challenging.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong, 528200, P. R. China.
B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
The cobalt-nitrogen-carbon (Co─N─C) single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the hydrogen evolution reaction (HER) and their activity is highly dependent on the coordination environments of the metal centers. Herein, a NaHCO etching strategy is developed to introduce abundant in-plane pores within the carbon substrates that further enable the construction of low-coordinated and asymmetric Co─N sites with nearby vacancy defects in a Co─N─C catalyst. This catalyst exhibits a high HER activity with an overpotential (η) of merely 78 mV to deliver a current density of 10 mA cm, a Tafel slope of 45.
View Article and Find Full Text PDFACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFChem Asian J
January 2025
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry, INDIA.
Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!