Single-photon emitters (SPEs) play an important role in many optical quantum technologies. However, an efficient large-scale approach to the generation of high-quality SPE arrays remains an elusive goal at room temperature. Here, we demonstrate a scalable method of generating SPE arrays in hexagonal boron nitride (hBN) with high yield, brightness, and purity using single-pulse irradiation by a femtosecond laser. Our use of a single pulse per defect pattern minimized heat-related damages and improved the purity of SPEs compared with the previous laser-based approaches. Under the optimized fabrication and post-treatment conditions, SPE arrays were successfully generated from the 3.0 μm defect patterns with 43% yield, the highest among the 2D-based top-down approaches. Importantly, we found that 100% of the bright defect patterns are SPEs with (0) < 0.5 under such conditions, with the lowest (0) = 0.06 ± 0.03. Our SPEs also exhibit the highest brightness with the saturation SPE rate at 7.15 million counts per second. We believe that our overall high-quality and large-scale approach will help a wide range of applications of SPEs in on-chip quantum technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c04386DOI Listing

Publication Analysis

Top Keywords

spe arrays
12
single-photon emitters
8
room temperature
8
hexagonal boron
8
boron nitride
8
quantum technologies
8
large-scale approach
8
defect patterns
8
spes
5
large-scale high-yield
4

Similar Publications

Construction of novel hyper-crosslinked polymers with adjustable hydrophilicity for efficient extraction of nitroimidazoles.

J Chromatogr A

January 2025

College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:

To effectively control food safety risks caused by nitroimidazoles (NDZs), a sensitive detection method was established on the basis of a newly-developed solid-phase extraction (SPE) sorbent named as Phl-TBM that is a porous polymer prepared by crosslinking natural phloretin with (2,4,6-tris(bromomethyl)mesitylene. The Phl-TBM presented outstanding NDZs adsorption capacity, which can be ascribed to its well-developed porosity and multiple hydrogen bonding sites. With Phl-TBM as SPE sorbent, NDZs were successfully isolated and enriched from lake water, Basa fish, and beef before being assayed by high-performance liquid chromatography-diode array detector.

View Article and Find Full Text PDF

Determination and validation of polycyclic aromatic hydrocarbons (PAH4) in katsuobushi, plant-based food supplements, and cocoa bean shells using GC-MS/MS.

J Food Drug Anal

December 2024

Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.

Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.

View Article and Find Full Text PDF

Sulfonamide antibiotics have a broad spectrum of antibacterial action and are widely used, but their overuse poses a threat to human health. In this study, a three-dimensional conjugated microporous polymer, which was designated as TPM-CMP, was synthesized via Friedel-Crafts reaction by using tetraphenylmethane (TPM) and biphenyl dichlorobenzene as monomers, and it was utilized as an adsorbent in solid-phase extraction (SPE) of sulfonamides. The TPM-CMP demonstrated high extraction efficiency for sulfonamides due to π-stacking interactions, hydrophobic forces, and pore-filling effects.

View Article and Find Full Text PDF

New Antioxidant Caffeate Esters of Fatty Alcohols Identified in .

Molecules

November 2024

Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.

The stem bark of black locust ( L.) was extracted, and nine antioxidant compounds (-) were detected by high-performance thin-layer chromatography combined with the radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, multi-detection, and heated electrospray high-resolution mass spectrometry. For structure elucidation, the methanolic crude extract was fractionated by solid-phase extraction, and the compounds were isolated by reversed-phase high-performance liquid chromatography with diode array detection.

View Article and Find Full Text PDF

Tunable single-photon emitters in 2D materials.

Nanophotonics

August 2024

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Article Synopsis
  • Single-photon emitters (SPEs) are essential for advancing quantum technologies like quantum computing by generating single photons needed for computation efficiently.
  • Recent advancements have been made in creating tunable SPEs in 2D materials, which can produce identical photons by controlling their emission properties.
  • The review covers the principles behind different 2D SPEs, innovative methods for tuning their emission wavelengths via strain and electric fields, and the future potential of these tunable SPEs in developing scalable arrays for practical quantum photonics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!