Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice.

Science

JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, CO 80309, USA.

Published: August 2022

Quantum walks provide a framework for designing quantum algorithms that is both intuitive and universal. To leverage the computational power of these walks, it is important to be able to programmably modify the graph a walker traverses while maintaining coherence. We do this by combining the fast, programmable control provided by optical tweezers with the scalable, homogeneous environment of an optical lattice. With these tools we study continuous-time quantum walks of single atoms on a square lattice and perform proof-of-principle demonstrations of spatial search with these walks. When scaled to more particles, the capabilities demonstrated can be extended to study a variety of problems in quantum information science, including performing more effective versions of spatial search using a larger graph with increased connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abo0608DOI Listing

Publication Analysis

Top Keywords

quantum walks
12
spatial search
8
walks
5
tweezer-programmable quantum
4
walks hubbard-regime
4
hubbard-regime lattice
4
quantum
4
lattice quantum
4
walks provide
4
provide framework
4

Similar Publications

An Entropy-Driven Multipedal DNA Walker Microsensor for In Situ Electrochemical Detection of ATP.

Anal Chem

December 2024

State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.

Microelectrode- and nanoelectrode-based electrochemistry has become a powerful tool for the in situ monitoring of various biomolecules in vivo. However, two challenges limit the application of micro- and nanoelectrodes: the difficulty of highly sensitive detection of nonelectroactive molecules and the specific detection of target molecules in complex biological environments. Herein, we propose an electrochemical microsensor based on an entropy-driven multipedal DNA walker for the highly sensitive and selective detection of ATP.

View Article and Find Full Text PDF

Polymers in Physics, Chemistry and Biology: Behavior of Linear Polymers in Fractal Structures.

Polymers (Basel)

December 2024

Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy.

We start presenting an overview on recent applications of linear polymers and networks in condensed matter physics, chemistry and biology by briefly discussing selected papers (published within 2022-2024) in some detail. They are organized into three main subsections: polymers in physics (further subdivided into simulations of coarse-grained models and structural properties of materials), chemistry (quantum mechanical calculations, environmental issues and rheological properties of viscoelastic composites) and biology (macromolecules, proteins and biomedical applications). The core of the work is devoted to a review of theoretical aspects of linear polymers, with emphasis on self-avoiding walk (SAW) chains, in regular lattices and in both deterministic and random fractal structures.

View Article and Find Full Text PDF

Quantum walks (QW) offer a speed-up advantage over random walks in quantum search applications. We present an experimental study of the transition from quantum-to-classical random walk using an emulation of the decoherence process for polarization qubits that exploits maximally non-separable spin-orbit modes of an intense laser beam for the first, to the best of our knowledge, time. We are able to continuously control the input polarization mode in an all-optical quantum walk circuit to observe transitions associated with quantum, quantum stochastic, and classical random walk distributions.

View Article and Find Full Text PDF
Article Synopsis
  • Low-dimensional quantum systems can support unique particles called anyons that behave differently from traditional particles like bosons and fermions, particularly in one dimension.
  • This study successfully creates Abelian anyons using ultracold atoms in an optical lattice and investigates their behavior, including quantum walks and a specific interference effect known as the Hanbury Brown-Twiss effect.
  • When interactions among the anyons are introduced, they exhibit different transport dynamics compared to bosons and fermions, paving the way for future research into complex behaviors of one-dimensional anyons.
View Article and Find Full Text PDF

The main aim of the present paper is to define an active particle in a quantum framework as a minimal model of quantum active matter and investigate the differences and similarities of quantum and classical active matter. Although the field of active matter has been expanding, most research has been conducted on classical systems. Here, we propose a truly deterministic quantum active-particle model with a nonunitary quantum walk as the minimal model of quantum active matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!