The actinorhizal plant Datisca glomerata (Datiscaceae, Cucurbitales) establishes a root nodule symbiosis with actinobacteria from the earliest branching symbiotic Frankia clade. A subfamily of a gene family encoding nodule-specific defensin-like cysteine-rich peptides is highly expressed in D. glomerata nodules. Phylogenetic analysis of the defensin domain showed that these defensin-like peptides share a common evolutionary origin with nodule-specific defensins from actinorhizal Fagales and with nodule-specific cysteine-rich peptides (NCRs) from legumes. In this study, the family member with the highest expression levels, DgDef1, was characterized. Promoter-GUS studies on transgenic hairy roots showed expression in the early stage of differentiation of infected cells, and transient expression in the nodule apex. DgDef1 contains an N-terminal signal peptide and a C-terminal acidic domain which are likely involved in subcellular targeting and do not affect peptide activity. In vitro studies with E. coli and Sinorhizobium meliloti 1021 showed that the defensin domain of DgDef1 has a cytotoxic effect, leading to membrane disruption with 50% lethality for S. meliloti 1021 at 20.8 μM. Analysis of the S. meliloti 1021 transcriptome showed that, at sublethal concentrations, DgDef1 induced the expression of terminal quinol oxidases, which are associated with the oxidative stress response and are also expressed during symbiosis. Overall, the changes induced by DgDef1 are reminiscent of those of some legume NCRs, suggesting that nodule-specific defensin-like peptides were part of the original root nodule toolkit and were subsequently lost in most symbiotic legumes, while being maintained in the actinorhizal lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387825 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268683 | PLOS |
Front Bioinform
August 2024
Center for Genomic Sciences, National Autonomous University of México, Cuernavaca, Mexico.
CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.
View Article and Find Full Text PDFBraz J Microbiol
September 2024
Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, 11600, Uruguay.
Finding novel promoter sequences is a cornerstone of synthetic biology. To contribute to the expanding catalog of biological parts, we employed a promoter-trap approach to identify novel sequences within an Antarctic microbial community that act as broad host-range promoters functional in diverse Pseudomonadota. Using Pseudomonas putida KT2440 as host, we generated a library comprising approximately 2,000 clones resulting in the identification of thirteen functional promoter sequences, thereby expanding the genetic toolkit available for this chassis.
View Article and Find Full Text PDFBioinform Biol Insights
September 2024
Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
RhizoBindingSites is a depurified database of conserved DNA motifs potentially involved in the transcriptional regulation of the , , , , and genera covering 9 representative symbiotic species, deduced from the upstream regulatory sequences of orthologous genes (O-matrices) from the Rhizobiales taxon. The sites collected with O-matrices per gene per genome from RhizoBindingSites were used to deduce matrices using the dyad-Regulatory Sequence Analysis Tool (RSAT) method, giving rise to novel S-matrices for the construction of the RizoBindingSites v2.0 database.
View Article and Find Full Text PDFISME J
January 2024
Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation.
View Article and Find Full Text PDFCarbohydr Polym
July 2024
Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea. Electronic address:
The development of exopolysaccharide-based polymers is gaining increasing attention in various industrial biotechnology fields for materials such as thickeners, texture modifiers, anti-freeze agents, antioxidants, and antibacterial agents. High-viscosity carboxyethyl-succinoglycan (CE-SG) was directly synthesized from succinoglycan (SG) isolated from Sinorhizobium meliloti Rm 1021, and its structural, rheological, and physiological properties were investigated. The viscosity of CE-SG gradually increased in proportion to the degree of carboxyethylation substitution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!