Dioxygenases catalyze stereoselective oxygen atom transfer in metabolic pathways of biological, industrial, and pharmaceutical importance, but their precise chemical principles remain controversial. The α-ketoglutarate (αKG)-dependent dioxygenase AsqJ synthesizes biomedically active quinolone alkaloids via desaturation and subsequent epoxidation of a carbon-carbon bond in the cyclopeptin substrate. Here, we combine high-resolution X-ray crystallography with enzyme engineering, quantum-classical (QM/MM) simulations, and biochemical assays to describe a peroxidic intermediate that bridges the substrate and active site metal ion in AsqJ. Homolytic cleavage of this moiety during substrate epoxidation generates an activated high-valent ferryl (Fe = O) species that mediates the next catalytic cycle, possibly without the consumption of the metabolically valuable αKG cosubstrate. Our combined findings provide an important understanding of chemical bond activation principles in complex enzymatic reaction networks and molecular mechanisms of dioxygenases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c05650DOI Listing

Publication Analysis

Top Keywords

bond activation
8
dioxygenase asqj
8
peroxy intermediate
4
intermediate drives
4
drives carbon
4
carbon bond
4
activation dioxygenase
4
asqj dioxygenases
4
dioxygenases catalyze
4
catalyze stereoselective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!