Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pancreatic islets transplantation is an optimal alternative to exogenous insulin injection for long-term effective type 1 diabetes treatment. However, direct islets transplantation without any protection can induce cell necrosis due to severe host immune rejection. Insufficient O supply induced by the lack of capillary network at the early stage of islets transplantation is another critical constraint limiting islets survival and insulin-secretion function. In this paper, we design a novel co-transplantation system composed of islets-laden nanocomposite microgels and O-generating microspheres. In particular, nanocomposite microgels confer the encapsulated islets with simultaneous physical protection and chemical anti-inflammation/immunosuppression by covalently anchoring rapamycin-loaded cyclodextrin nanoparticles to microgel network. Meanwhile, O-generating microspheres prepared by blending inorganic peroxides in biodegradable polycaprolactone and polylactic acid can generate in situ O gas and thus avoid hypoxia environment around transplanted islets. In vivo therapeutic effect of diabetic mice proves the reversion of the high blood glucose level back to normoglycemia and superior glucose tolerance for at least 90 days post co-transplantation. In brief, the localized drug and oxygen codelivery, as well as physical protection provided by our co-transplantation system, has the potential to overcome to a large extent the inflammatory, hypoxia, and host immune rejection after islets transplantation. This new strategy may have wider application in other cell replacement therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c07215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!