Practical and Rapid Membrane-Based Biosensor for Phenol Using Copper/Calcium-Enzyme Hybrid Nanoflowers.

Appl Biochem Biotechnol

Department of Chemical and Food Engineering, Federal University of Santa Catarina - UFSC, CEP, Florianópolis, SC, 88040-900, Brazil.

Published: January 2023

Phenol, a pollutant frequently found in chemical industries effluents, is highly toxic even in low concentrations. This study reports a green, simple, and rapid method for qualitative phenol biosensing using horseradish peroxidase (HRP) hybrid nanoflowers made with copper (Cu-hNF) or calcium (Ca-hNF) ions. The enzyme was immobilized through protein-inorganic self-assembly into hybrid structures and subsequently supported onto a polyvinylidene fluoride (PVDF) membrane. SEM, EDS, FTIR, and XRD techniques sustained the effective enzyme encapsulation into hybrid structures. The protein concentration in the structures was 0.25 mg.mL for both ions. The best temperature and pH were 60 °C and 7.4, respectively, for both hybrids and the free enzyme, suggesting that the immobilization did not affect the optimal conditions of the free HRP. Thermal stability from 25 to 70 °C and pH stability from 4.0 to 9.0 of the hybrids were also determined. Finally, using copper and calcium hybrids, both biosensors produced onto a PVDF membrane could detect phenol in concentrations ranging from 0.72 to 24.00 µmol.mL in 1 min. In contrast, control biosensors produced with free enzyme have not presented a visible color change in the same conditions. The findings suggest a promising application of the developed biosensors in functional phenol detection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04101-5DOI Listing

Publication Analysis

Top Keywords

hybrid nanoflowers
8
hybrid structures
8
pvdf membrane
8
free enzyme
8
biosensors produced
8
phenol
5
practical rapid
4
rapid membrane-based
4
membrane-based biosensor
4
biosensor phenol
4

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

A DNA tweezer-actuated nanozyme-enzyme hybrid nanoreactor for pesticide detection.

Biosens Bioelectron

March 2025

State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China. Electronic address:

The construction of a nanozyme-enzyme hybrid cascade system is an effective protocol to optimize the performance of biosensors. Yet, the integration has limitations due to the lack of harmonious collaboration between nanozyme and enzyme. Herein, we have constructed an efficient enzymatic cascade system by utilizing the base complementary pairing and the targeting capability of DNA tweezers to combine DNA-regulated copper nanoflowers (CuNFs) with acetylcholinesterase (AChE).

View Article and Find Full Text PDF

This study introduces an innovative bioinspired hydrogel scaffold tailored to facilitate the in-situ integration of hybrid nanoflowers (HNFs) into the sensing interface, thereby establishing a versatile dual-mode platform for the sensitive profiling of acetylcholinesterase (AChE) inhibitors, a pivotal aspect in the pursuit of Alzheimer's disease therapeutics. Mimicking the tenacious anchoring of natural tree roots, our design employs magnetic bead imprinting with Strep-Tactin-coated magnetic beads (STMBs) to shape the hydrogel, which is then complemented by the integration of AChE-specific aptamers. This configuration creates a stable and biomimetic environment that nurtures HNF growth, thereby enhancing the binding integrity of HNFs with sensing interfaces.

View Article and Find Full Text PDF

A commercially important pullulanase enzyme that hydrolyzes α-1,6 glycosidic linkages in pullulan was immobilized as pullulanase/Cu(PO) hybrid nanoflower. Free and immobilized enzymes both showed the highest activity at 25 °C. The optimum pH of the free enzyme was 4.

View Article and Find Full Text PDF

Precipitated-crosslinked multi-enzyme hybrid nanoflowers for efficient synthesis of α-ketoglutaric acid.

Int J Biol Macromol

December 2024

State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China. Electronic address:

Cascade catalysis of glutamate oxidase (GLOX) and catalase (CAT) to perform one-pot synthetic route for α-ketoglutarate (α-KG) production offers several advantages including simplicity of operation and the generation of few reaction by-products. Nevertheless, the instability of free GLOX and CAT, the high production cost and the difficulty of recycling severely limits its industrial utilisation. Here, catalase-inorganic hybrid nanoflowers were first prepared, and cross-linked with GLOX precipitates by a macromolecular cross-linking agent dextran polyaldehyde to form a novel dual enzyme precipitation-cross-linking hybrid nanoflower (GLOX@CAT-HNFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!