A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Landscape Composition and Management History Affect Alfalfa Weevil but not its Parasitoid. | LitMetric

It is widely recognized that both local and landscape-scale factors can be important drivers of crop pests, natural enemies, and biocontrol services. However, recent syntheses have found that landscape effects are inconsistent across study systems, highlighting the need for system-specific research to guide management decisions. In particular, studies conducted in perennial crops and that examine landscape configuration, not just composition, are especially lacking. We studied the impact of local and landscape factors on alfalfa weevil Hypera postica and its parasitoid Bathyplectes curculionis. Although classical biological control efforts have largely suppressed H. postica in the eastern United States, it remains problematic in the western United States. We sampled 20 production alfalfa fields in southeastern Wyoming to estimate H. postica density, parasitism rates by B. curculionis, and vegetation at local scales. We used remotely sensed imagery to characterize both landscape composition and configuration surrounding each sampled field. We used a hypothesis-driven modeling approach to determine which model was most predictive of H. postica and parasitism rate by B. curculionis. Landscape composition was the best model to predict H. postica densities. Host density was the best predictor of parasitism rates by B. curculionis. Production fields that had received insecticide applications in the last 5 years had higher weevil densities than fields that had not received insecticide applications. Stand age was not associated with weevil density or parasitism rate. In conclusion, we found local, landscape, and management components to be important in this system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585371PMC
http://dx.doi.org/10.1093/ee/nvac057DOI Listing

Publication Analysis

Top Keywords

landscape composition
12
alfalfa weevil
8
local landscape
8
united states
8
density parasitism
8
parasitism rates
8
rates curculionis
8
parasitism rate
8
fields received
8
received insecticide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!