Porous Polymer Cubosomes with Ordered Single Primitive Bicontinuous Architecture and Their Sodium-Iodine Batteries.

J Am Chem Soc

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China.

Published: August 2022

Bicontinuous porous materials, which possess 3D interconnected pore channels facilitating a smooth mass transport, have attracted much interest in the fields of energy and catalysis. However, their synthesis remains very challenging. We report a general approach, using polymer cubosomes as the template, for the controllable synthesis of bicontinuous porous polymers with an ordered single primitive (SP) cubic structure, including polypyrrole (SP-PPy), poly--phenylenediamine (SP-PmPD), and polydopamine (SP-PDA). Specifically, the resultant SP-PPy had a unit cell parameter of 99 nm, pore diameter of 45 nm, and specific surface area of approximately 60 m·g. As a proof of concept, the I-adsorbed SP-PPy was employed as the cathode materials of newly emerged Na-I batteries, which delivered a record-high specific capacity (235 mA·h·g at 0.5 C), excellent rate capability, and cycling stability (with a low capacity decay of 0.12% per cycle within 400 cycles at 1 C). The advantageous contributions of the bicontinuous structure and I adsorption mechanism of SP-PPy were revealed by a combination of ion diffusion experiments and theoretical calculations. This study opens a new avenue for the synthesis of porous polymers with new topologies, broadens the spectrum of bicontinuous-structured materials, and also develops a novel potential application for porous polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c02881DOI Listing

Publication Analysis

Top Keywords

porous polymers
12
polymer cubosomes
8
ordered single
8
single primitive
8
bicontinuous porous
8
porous
5
porous polymer
4
cubosomes ordered
4
bicontinuous
4
primitive bicontinuous
4

Similar Publications

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

Protocol for the fabrication of self-standing (nano)cellulose-based 3D scaffolds for tissue engineering.

STAR Protoc

January 2025

Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia; Members of the European Polysaccharide Network of Excellence (EPNOE).

Three-dimensional (3D) and porous scaffolds made from nanocellulosic materials hold significant potential in tissue engineering (TE). Here, we present a protocol for fabricating self-standing (nano)cellulose-based 3D scaffolds designed for in vitro testing of cells from skin and cartilage tissues. We describe steps for preparation of nanocellulose ink, scaffold formation using 3D printing, and freeze-drying.

View Article and Find Full Text PDF

Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!