Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron-based crystalline porous materials (CPMs) emerged as a new class of biodegradable and non-toxic materials of high interest for drug delivery systems (DDSs) due to their high loading capacity and controllable structures. This work constructed two kinds of Fe-CPM coordination polymers (CPM-83 and CPM-85) from typical oxo-centered trimers of the iron octahedra cluster [FeO(RCOO)(TPT)] with two functional modules. The tri-topic pyridine ligand (TPT) occupied the open metal sites of the trinuclear cluster, precluding the attachment of neutralizing anions, leading to three-dimensional frameworks with a positive charge and higher stability. Moreover, the triazine ligand TPT divides the original columnar channel into small domains, improving the adsorption efficiency and maximizing the host-guest interaction. Hence, the suitable pore size and electrostatic force make the materials highly adsorption selective for the anticancer drug 5-fluorouracil (5-Fu). We show that Fe-CPM-83 and Fe-CPM-85 loaded with 5-Fu are efficient drug delivery vehicles with loading content as high as 60.5 (wt%) and 32.8 (wt%) within 2-5 h of loading time. Simultaneously, their sustained release kinetics can be up to 96 hours with a completely different pH-responsive controlled release. The released content is 77% or 85% for each complex, significantly prolonging the release process and decreasing the plasma concentration. The MTT assay was performed on mouse fibroblasts (L929) to demonstrate the satisfactory biocompatibility of the matrix. This work has momentous research significance and application value for developing novel drug-delivery materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01854c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!