A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two cationic iron-based crystalline porous materials for encapsulation and sustained release of 5-fluorouracil. | LitMetric

Two cationic iron-based crystalline porous materials for encapsulation and sustained release of 5-fluorouracil.

Dalton Trans

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.

Published: September 2022

Iron-based crystalline porous materials (CPMs) emerged as a new class of biodegradable and non-toxic materials of high interest for drug delivery systems (DDSs) due to their high loading capacity and controllable structures. This work constructed two kinds of Fe-CPM coordination polymers (CPM-83 and CPM-85) from typical oxo-centered trimers of the iron octahedra cluster [FeO(RCOO)(TPT)] with two functional modules. The tri-topic pyridine ligand (TPT) occupied the open metal sites of the trinuclear cluster, precluding the attachment of neutralizing anions, leading to three-dimensional frameworks with a positive charge and higher stability. Moreover, the triazine ligand TPT divides the original columnar channel into small domains, improving the adsorption efficiency and maximizing the host-guest interaction. Hence, the suitable pore size and electrostatic force make the materials highly adsorption selective for the anticancer drug 5-fluorouracil (5-Fu). We show that Fe-CPM-83 and Fe-CPM-85 loaded with 5-Fu are efficient drug delivery vehicles with loading content as high as 60.5 (wt%) and 32.8 (wt%) within 2-5 h of loading time. Simultaneously, their sustained release kinetics can be up to 96 hours with a completely different pH-responsive controlled release. The released content is 77% or 85% for each complex, significantly prolonging the release process and decreasing the plasma concentration. The MTT assay was performed on mouse fibroblasts (L929) to demonstrate the satisfactory biocompatibility of the matrix. This work has momentous research significance and application value for developing novel drug-delivery materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt01854cDOI Listing

Publication Analysis

Top Keywords

iron-based crystalline
8
crystalline porous
8
porous materials
8
sustained release
8
drug delivery
8
ligand tpt
8
materials
5
cationic iron-based
4
materials encapsulation
4
encapsulation sustained
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!