Here, we report a computational investigation on the role of the most common van der Waals (vdW) corrections (D2, D3, D3(BJ), TS, TS+SCS, TS+HI, and dDsC) employed in density functional theory (DFT) calculations within local and semilocal exchange-correlation functionals to improve the description of the interaction between molecular species and solid surfaces. For this, we selected several molecular model systems, namely, the adsorption of small molecules (CH, CH, CO, CO, HO, and OH) on the close-packed Cu(111) surface, which bind chemisorption or physisorption mechanisms. As expected, we found that the addition of the vdW corrections enhances the energetic stability of the Cu bulk in the face-centered cubic structure, which contributes to increasing the magnitude of the mechanical properties (elastic constants, bulk, Young, and shear modulus). Except for the TS+SCS correction, all vdW corrections substantially increase the surface energy, while the work function changes by about 0.05 eV (largest change). However, we found substantial differences among the vdW corrections when comparing its effects on interlayer spacing relaxations. Based on bulk and surface results, we selected only the D3 and dDsC vdW corrections for the study of the adsorption properties of the selected molecules on the Cu(111) surface. Overall, the addition of these vdW corrections has a greater effect on weakly interacting systems (CH, CO, HO), while the chemisorption systems (CH, CO, OH) are less affected.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp02663eDOI Listing

Publication Analysis

Top Keywords

vdw corrections
24
cu111 surface
12
computational investigation
8
van der
8
der waals
8
adsorption properties
8
molecules cu111
8
addition vdw
8
corrections
7
vdw
6

Similar Publications

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

Free Energy-Based Refinement of DNA Force Field via Modification of Multiple Nonbonding Energy Terms.

J Chem Inf Model

January 2025

Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea.

The amber-OL21 force field (ff) was developed to better describe noncanonical DNA, including Z-DNA. Despite its improvements for DNA simulations, this study found that OL21's scope of application was limited by embedded ff artifacts. In a benchmark set of seven DNA molecules, including two double-stranded DNAs transitioning between B- and Z-DNA and five single-stranded DNAs folding into mini-dumbbell or G-quadruplex structures, the free energy landscapes obtained using OL21 revealed several issues: Z-DNA was overly stabilized; misfolded states in mini-dumbbell DNAs were most stable; DNA GQ folding was consistently biased toward an antiparallel topology.

View Article and Find Full Text PDF

Benchmarking DFT approximations for studying apatites.

Phys Chem Chem Phys

December 2024

Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA.

Despite the growing interest in apatites, available experimental studies on their properties are limited in scope. Researchers, therefore, are increasingly resorting to predictions using density functional theory (DFT). However, large deviations can be seen between DFT-based estimates and experimental results, presumably due to approximations made in DFT models.

View Article and Find Full Text PDF

Phase Tailoring of InSe Toward van der Waals Vertical Heterostructures via Selenization of γ-InSe Semiconductor.

Small Methods

November 2024

Key Laboratory of Polar Materials and Devices (MOE), Shanghai Center of Brain-inspired Intelligent Materials and Devices, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.

The polymorphic nature of InSe leads to excellent phase-dependent physical properties including ferroelectricity, photoelectricity, and especially the intriguing phase change ability, making the precise phase modulation of InSe of fundamental importance but very challenging. Here, the growth of InSe with desired-phase is realized by temperature-controlled selenization of van der Waals (vdW) layered bulk γ-InSe. Detailed results of Raman spectroscopy, scanning electron microscopy (SEM), and state-of-the-art spherical aberration-corrected transmission electron microscopy (Cs-TEM) clearly and consistently show that β-InSe, 3R α-InSe, and 2H α-InSe can be perfectly obtained at ≈270, ≈300, and ≈600 °C, respectively.

View Article and Find Full Text PDF

Layer-number and strain effects on the structural and electronic properties of PtSematerial.

J Phys Condens Matter

October 2024

Faculté des Sciences de Bizerte, Laboratoire de Physique des Matériaux: Structure et Propriétés, Université de Carthage, 7021 Jarzouna, Tunisia.

Bandgap engineering of low-dimensional materials forms a robust basis for advancements in optoelectronic technologies. Platinum diselenide (PtSe) material exhibits a transition from semi-metal to semiconductor (SM-SC) when going from bulk to monolayer. In this work, density functional theory (DFT) with various van der Waals (vdW) corrections has been tested to study the effect of the layer-number on the structural and electronic properties of the PtSematerial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!