Chemical or enzymatic biotinylation of proteins is widely used in various studies, and proximity-dependent biotinylation coupled to mass spectrometry is a powerful approach for analyzing protein-protein interactions in living cells. We recently developed a simple method to enrich biotinylated peptides using Tamavidin 2-REV, an engineered avidin-like protein with reversible biotin-binding capability. However, the level of biotinylated proteins in cells is low; therefore, large amounts of cellular proteins were required to detect biotinylated peptides. In addition, the enriched biotinylated peptide solution contained many contaminant ions. Here, we optimized the workflow for efficient enrichment of biotinylated peptides and removal of contaminant ions. The efficient recovery of biotinylated peptides with fewer contaminant ions was achieved by heat inactivation of trypsin, prewashing Tamavidin 2-REV beads, clean-up of biotin solution, mock elution, and using optimal temperature and salt concentration for elution. The optimized workflow enabled identification of nearly 4-fold more biotinylated peptides with higher purity from RAW264.7 macrophages expressing TurboID-fused STING (stimulator of interferon genes). In addition, sequential digestion with Glu-C and trypsin revealed biotinylation sites that were not identified by trypsin digestion alone. Furthermore, the combination of this workflow with TMT labeling enabled large-scale quantification of cell surface proteome changes upon epidermal growth factor (EGF) stimulation. This workflow will be useful for BioID and cell surface proteomics and for various other applications based on protein biotinylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.2c00130 | DOI Listing |
Int J Pharm
January 2025
Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:
Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Chemistry, University of Richmond, Gottwald Science Center, B-100 138 UR Drive, Richmond, VA 23173, United States. Electronic address:
We report the development of a new electron-rich aniline (ERA)-based cleavable linker. Anilines can be incorporated into peptides during SPPS and are stable to most reaction conditions. ERA-containing peptides can be cleaved rapidly in the presence of oxidants, such as DDQ, CAN, and NaIO, in 30 min at room temperature.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye.
Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
The neurotoxin α-cyclopiazonic acid (CPA) is an emerging mycotoxin produced as a secondary metabolite by several fungi species (., spp. and spp.
View Article and Find Full Text PDFJ Thromb Haemost
November 2024
Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands. Electronic address:
Background: The main complication in hemophilia A treatment is the development of inhibitory antibodies against factor (F)VIII. Immune tolerance induction, the gold standard for eradicating anti-FVIII antibodies, is efficient in only 60% to 80% of cases. This underscores the need for more efficient induction of tolerance in patients with hemophilia A with FVIII inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!