Introduction: Over the last decade, a shift in the spontaneous bacterial peritonitis (SBP) microbial pattern toward an increasing incidence of gram-positive and multidrug-resistant (MDR) bacteria has been reported. Systematic surveillance of the local microbiological scenario and antibiotic resistance is crucial to SBP treatment success. The main objective of this study was to evaluate the microbiological profile and bacterial resistance of SBP pathogens in a Portuguese cohort to allow selection of the most appropriate empirical antibiotics.

Methods: This is a single-center retrospective study including 63 adult cirrhotic patients with culture-positive SBP. Patients were identified using a hospital general diagnostic database and searching for all SBP events (neutrophil count in ascitic fluid ≥250/mm) from January 1, 2012, to December 31, 2017. Patients were excluded if they had culture-negative SBP, secondary peritonitis, peritoneal dialysis, a liver transplant, or immunodeficiency. The site of SBP acquisition was classified as nosocomial if it was diagnosed 48 h or longer after hospitalization or as nonnosocomial if it was diagnosed within the first 48 h. MDR bacteria were those with an acquired resistance to at least 1 agent in 3 or more antimicrobial categories. All statistical analyses were carried out using IBM SPSS Statistics software version 22 (IBM, New York, USA).

Results: The study cohort comprised 53 (84.1%) men. The mean age of the patients was 60.6 ± 11.2 years. Alcohol was the most common etiology (88.9%) and most patients had advanced liver cirrhosis (87.1%, Child C). Gram-negative bacteria were slightly more frequent than gram-positive bacteria (56.9 vs. 43.1%). was the most common pathogen (33.8%). Nineteen (31.7%) bacteria were classified as MDR. Resistance to third-generation cephalosporins, quinolones, piperacillin-tazobactam, and carbapenems was found in 31.7, 35, 26.7, and 18.3% of the cases, respectively. The rates of gram-positive bacteria were similar between nosocomial and nonnosocomial episodes (45 vs. 42.2%; = 0.835). MDR bacteria were more common in the nosocomial group (50 vs. 23.8%; = 0.046). Resistance to third-generation cephalosporins (50 vs. 23.8%; = 0.046), piperacillin-tazobactam (44.4 vs. 19.1%; = 0.041), and carbapenems (33.3 vs. 11.9%; = 0.049) occurred more frequently in nosocomial episodes. Resistance to first-line antibiotic occurred in 29.3% of the patients, being more common in the nosocomial group (44.4 vs. 22.5%; = 0.089).

Conclusion: Although gram-negative bacteria remain the most common causative microorganisms, our results emphasize the shift in SBP microbiological etiology, as almost half of the isolated microorganisms were gram positive. The emergence of bacteria resistant to traditionally recommended empirical antibiotics underlines the importance of basing this choice on local flora and antibiotic susceptibility data, allowing a more rational and successful use of antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274822PMC
http://dx.doi.org/10.1159/000518585DOI Listing

Publication Analysis

Top Keywords

mdr bacteria
12
bacteria
9
spontaneous bacterial
8
bacterial peritonitis
8
cirrhotic patients
8
sbp
8
gram-negative bacteria
8
gram-positive bacteria
8
resistance third-generation
8
third-generation cephalosporins
8

Similar Publications

Introduction: Multidrug resistant (MDR) Gram-negative bacterial infections are considered a major public health threat. The objectives of this study were to describe the epidemiology, potential contributing factors, and antimicrobial resistance patterns associated with infections caused by MDR Gram-negative bacteria (GNB) in non-immunocompromised children and adolescents.

Methods: This was a retrospective observational study conducted at the American University of Beirut Medical Center (AUBMC) from 2009 to 2017.

View Article and Find Full Text PDF

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

Proteomic Profiling and Pre-Clinical Efficacy of Antimicrobial Lithium Complex and Colistin Combination against Multi-drug Resistant Acinetobacter baumannii.

Microb Pathog

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:

Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.

View Article and Find Full Text PDF

The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A.

View Article and Find Full Text PDF

Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!