Among abiotic stresses, salinity is a significant limiting factor affecting agricultural productivity, survival, and production, resulting in significant economic losses. Considering the salinity problem, the goal of this study was to identify a halotolerant beneficial soil bacterium to circumvent salinity-induced phytotoxicity. Here, strain KR-17 (having an irregular margin; a mucoid colony; Gm-ve short rod; optimum temperature, 30°C; pH 7.0; no any pigmentation; showed a positive response to citrate utilization, catalase, starch, sucrose, lactose, and dextrose, etc.) recovered from rhizosphere soils of the potato-cultivating field, tolerated surprisingly a high (18% NaCl; 3.-M concentration) level of salt and identified as (Accession No. OM348535). This strain was discovered to be metabolically active, synthesized essential PGP bioactive molecules like indole-3-acetic acid (IAA), siderophore (iron-chelating compounds), ACC deaminase, and ammonia, the quantity of which, however, increased with increasing NaCl concentrations. Here, L. (radish) was taken as a model crop to evaluate the adverse impact of NaCl, as well as salinity alleviation by halotolerant . Salinity-induced toxicity to was increased in a dose-dependent way, as observed both and conditions. Maximum NaCl levels (15%) demonstrated more extreme harm and considerably reduced the plant's biological features. However, membrane damage, relative leaf water content (RLWC), stressor metabolites, and antioxidant enzymes were increased as NaCl concentration increased. In contrast, halotolerant KR-17 relieved salinity stress and enhanced the overall performance of (L.) by increasing germination efficiency, dry biomass, and leaf pigments even in salt-challenged conditions. Additionally, KR-17 inoculation significantly ( ≤ 0.05) improved plant mineral nutrients (Na, K, Ca, Mg, Zn, Fe, Cu, P, and N). Following inoculation, strain KR-17 enhanced the protein, carbohydrates, root pigments, amino acids (AsA and Lys), lipids, and root alkaloids in (L.). Besides these, due to PGPR seed priming in NaCl-stressed/non-stressed conditions, membrane damage, RLWC, stressor metabolites, and antioxidant defense enzymes were dramatically reduced. The strong biofilm-forming capacity of could result in both and colonization under NaCl stress. Conclusively, halotolerant KR-17 may probably be investigated affordably as the greatest way to increase the production of radish under salinity-stressed soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376370 | PMC |
http://dx.doi.org/10.3389/fpls.2022.919696 | DOI Listing |
Biology (Basel)
January 2025
Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
The Chinese soft-shelled turtle (), a type of warm-water reptile, is frequently chosen as the model animal to understand how organisms respond to environmental stressors. However, the responsive mechanism of to natural cold stress is unclear, especially in terms of metabolic pattern and molecular pathways. Herein, plasma biochemical, hepatic morphological, apoptotic, transcriptomic, and metabolomic detection methods were performed to investigate the response of to acute cold stress.
View Article and Find Full Text PDFPLoS One
January 2025
Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands. Electronic address:
Effective environmental risk assessments of chemical plant protection products, such as benzoylurea pesticides, are crucial for safeguarding ecosystems. These pesticides, including teflubenzuron, target chitin synthesis in arthropods but also pose risks to non-target soil fauna like Collembola, which play essential roles in decomposition and nutrient cycling. This study combines traditional toxicity tests with a metabolomic approach to examine the interspecies specific sensitivity of three Collembola species - Sinella curviseta, Ceratophysella denticulata, and Folsomia candida - to teflubenzuron.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Animal Welfare Science, Departments of Comparative Pathobiology and Animal Science, Purdue University, West Lafayette, IN, 47907, USA.
It is well established that maternal factors can affect the abilities of offspring to cope with stressors and can influence their overall welfare states. However, maternal effects have not been extensively explored in US commercial breeding kennels (CBKs). Therefore, the objective of this study was to identify if fear and stress in dams affected puppy welfare metrics in CBKs.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biology, Duke University, Durham, NC, USA.
In vertebrates, glucocorticoids can be upregulated in response to both psychosocial and energetic stressors, making it difficult to identify the cause of elevated glucocorticoid concentrations when both types of stressors are present. This problem has been particularly challenging in studies of social dominance rank in wild animals. In contrast to glucocorticoids, thyroid hormone concentrations are largely unaffected by psychosocial stressors and therefore offer a better estimate of energetic challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!