The interface structure of the electrode is closely related to the electrochemical performance of lithium-metal batteries (LMBs). In particular, a high-quality solid electrode interface (SEI) and uniform, dense lithium plating/stripping processes play a key role in achieving stable LMBs. Herein, a LiF-rich SEI and a uniform and dense plating/stripping process of the electrolyte by reducing the electrolyte concentration without changing the solvation structure, thereby avoiding the high cost and poor wetting properties of high-concentration electrolytes are achieved. The ultra-low concentration electrolyte with an unchanged Li solvation structure can restrain the inhomogeneous diffusion flux of Li , thereby achieving more uniform lithium deposition and stripping processes while maintaining a LiF-rich SEI. The LiIICu battery with this electrolyte exhibits enhanced cycling stability for 1000 cycles with a coulombic efficiency of 99% at 1 mA cm and 1 mAh cm . For the LiIILiFePO pouch cell, the capacity retention values at 0.5 and 1 C are 98.6% and 91.4%, respectively. This study offers a new perspective for the commercial application of low-cost electrolytes with ultra-low concentrations and high concentration effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534938 | PMC |
http://dx.doi.org/10.1002/advs.202203216 | DOI Listing |
Chem Sci
January 2025
School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
Poly(ethylene oxide) (PEO)-based solid-state polymer electrolyte (SPE) is a promising candidate for the next generation of safer lithium-metal batteries. However, the serious side reaction between PEO and lithium metal and the uneven deposition of lithium ions lead to the growth of lithium dendrites and the rapid decline of battery cycle life. Building a LiF-rich solid electrolyte interface (SEI) layer is considered to be an effective means to solve the above problems.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Republic of Korea.
Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
We propose an accurate prelithiation method for SiO anodes using ball-milling with LiF. The formation of a LiF-rich SEI layer reduces active lithium loss, resulting in excellent electrochemical performance. This study provides a new approach for developing high-performance silicon-based anodes for lithium-ion batteries.
View Article and Find Full Text PDFSmall
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, China.
Insufficient ionic conductivity, limited Li transfer number (t+), and narrow electrochemical windows have heavily restricted the actual application of PEO (poly(ethylene) oxide)-based polymer electrolytes (PEs). Herein, a novel deep eutectic solvent (DES)-based PEO PE for stabilizing high voltage lithium metal battery (LMB) is designed. The DES reduces the crystallinity of PEO while promoting the dissociation of LiTFSI to release more free Li, thus facilitating the transport of Li in the PEO matrix.
View Article and Find Full Text PDFNano Lett
November 2024
College of Materials Science and Engineering, Zhejiang University of Technology; Hangzhou 310014, China.
The self-assembled monolayer (SAM) technique, known for its customizable molecular segments and active end groups, is widely recognized as a powerful tool for regulating the interfacial properties of high-energy-density lithium metal batteries. However, it remains unclear how the degree of long-range order in SAMs affects the solid electrolyte interphase (SEI). In this study, we precisely controlled the hydrolysis of silanes to construct monolayers with varying degrees of long-range order and investigated their effects on the SEI nanostructure and lithium anode performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!