Application of quorum sensing system in microbial synthesis of valuable chemicals: a mini-review.

World J Microbiol Biotechnol

School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.

Published: August 2022

With advantages of low substrates cost, high optical purity of end products and environmentally friendly fermentation process, microbial production of valuable chemicals grow rapidly. Compared with static microbial strain engineering strategies, such as gene deletion, overexpression and mutation, dynamic pathway regulation is a new approach that balances cellular growth and chemical production. Quorum sensing is a natural microbial communication system responsible for cell-density-related cell behaviors. Accordingly, quorum sensing systems can be employed to achieve dynamic regulation in microorganisms without the need for manual intervention or the use of chemical inducers. In this review, natural quorum sensing systems are firstly summarized. Then, recent progress in using quorum sensing circuits in the field of metabolic engineering is highlighted. The current application challenges of quorum sensing systems and future perspectives in microbial synthesis of chemicals are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-022-03382-6DOI Listing

Publication Analysis

Top Keywords

quorum sensing
24
sensing systems
12
microbial synthesis
8
valuable chemicals
8
sensing
6
microbial
5
quorum
5
application quorum
4
sensing system
4
system microbial
4

Similar Publications

Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly.

Braz J Microbiol

December 2024

Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.

Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions.

View Article and Find Full Text PDF

Quorum quenching effects of linoleic and stearic acids on outer membrane vesicle-mediated virulence in .

Biofouling

December 2024

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, India.

is a pathogenic bacterium that can infect humans and animals, yet the role of its outer membrane vesicles (OMVs) in mediating pathogenicity remains underexplored. This study evaluated the effects of linoleic acid (LA) and stearic acid (SA) on quorum sensing (QS)-mediated violacein production, biofilm formation, and OMV biogenesis in . Our findings revealed that 2 mM LA and 1 mM SA effectively quench QS, leading to a significant reduction in violacein production, biofilm formation, and OMV biogenesis.

View Article and Find Full Text PDF

Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from - namely, the competence and sporulation factor (CSF) and (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast .

View Article and Find Full Text PDF

Role of bacterial quorum sensing in plant growth promotion.

World J Microbiol Biotechnol

December 2024

Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!