A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl2q91r2f355l9k3aspckj45ppbk10kss): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

N-Glycan Engineering: Constructing the N-GlcNAc Stump. | LitMetric

N-Glycan Engineering: Constructing the N-GlcNAc Stump.

Chembiochem

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.

Published: January 2023

N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202200388DOI Listing

Publication Analysis

Top Keywords

n-glycan engineering
4
engineering constructing
4
constructing n-glcnac
4
n-glcnac stump
4
stump n-glycosylation
4
n-glycosylation essential
4
essential structure
4
structure function
4
proteins
4
function proteins
4

Similar Publications

Isotope-coded hydrazide tags for MALDI-MS based quantitative glycomics.

Talanta

March 2025

The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:

The detection of glycosylation alterations is essential for elucidating the roles of glycan functions in biological processes and identifying potential disease biomarkers. Stable isotopic chemical labeling, coupled with mass spectrometry (MS), represents a powerful approach in quantitative glycomics. In this study, we synthesized a novel isotopic hydrazide pair, 2,6-Dimethyl-4-chinolincarbohydrazid (DMQCH) and its deuterium isomer DMQCH-d, via an efficient and cost-effective method, and applied it for the first time in MALDI-MS-based quantitative glycomics.

View Article and Find Full Text PDF

Glycosylation, a major posttranslational modification (PTM), is often dysregulated in cancer due to altered glycosyltransferase activity. Studies have shown specific changes in glycan structures associated with epithelial-mesenchymal transition (EMT) in cancer cells. However, the specific mechanism by which glycosyltransferases contribute to EMT remains unclear.

View Article and Find Full Text PDF

N-acetylglucosamine sensor, Ngs1 contributes to Beauveria bassiana vegetative growth, oxidative phosphorylation, fungal development, and cell wall integrity during entomopathogen-insect interaction.

Pestic Biochem Physiol

March 2025

College of Biological Science and Engineering, Fuzhou University, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fujian, China. Electronic address:

N-acetylglucosamine (GlcNAc), a key component of fungal cell walls and insect cuticles, is an important signal to activate fungal response during entomopathogen-insect interactions. Research on Ngs1, the only identified GlcNAc sensor and transducer, has been primarily restricted to Candida species. Although our previous work identified an Ngs1 homology in Beauveria bassiana, its physiological functions in entomopathogenic fungi remain largely unexplored.

View Article and Find Full Text PDF

It is well established that acute and chronic stress contributes to the onset and progression of depression, but the underlying mechanisms have not been elucidated. Here an integrated N-glycoproteomic and proteomic analysis was performed to investigate heterogeneities of glycoprotein and site-specific glycosylation between the hippocampi of control, acute stress-affected (AS), and chronic mild stress-affected (CMS) mice. 1063 unique intact N-glycopeptides, 116 N-glycan compositions, and 512 glycosylation sites were identified.

View Article and Find Full Text PDF

Background: Axial spondyloarthritis (axSpA) is an inflammatory rheumatic disease with challenges in diagnosis and disease activity assessment. While alterations in immunoglobulin G (IgG) N-glycosylation have been observed in varied rheumatic diseases, those in axSpA remains unclear. This study aims to explore the role of IgG N-glycan profiles in diagnosis and disease activity of axSpA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!