Targeting tumor microenvironment for cholangiocarcinoma: Opportunities for precision medicine.

Transl Oncol

Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, Bologna 40138, Italy; Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, Bologna 40138, Italy.

Published: November 2022

AI Article Synopsis

  • Systemic treatments like chemotherapy and targeted therapies are generally ineffective for patients with advanced cholangiocarcinoma, leading to an overall survival of less than a year.
  • The tumor microenvironment (TME) surrounding cholangiocarcinoma is complex and consists of various cell types and factors, particularly a dense desmoplastic stroma, which significantly influences cancer development and progression.
  • Recent research indicates that targeting the TME in combination with other treatments may enhance therapeutic effectiveness, prompting exploration of combined treatment strategies to improve patient outcomes.

Article Abstract

Systemic treatments (e.g., chemotherapy and targeted therapies) have limited efficacy for patients with locally advanced - unresectable - and metastatic cholangiocarcinoma (CCA), with an overall survival of less than a year. Tumor microenvironment (TME) represents the ecosystem surrounding the tumor which comprises immune cells, fibroblasts, endothelial cells, and a wide range of soluble factors. CCA TME is characterized by an abundant desmoplastic stroma, exhibits a high heterogeneity and it plays a central role in cancer onset and progression. There is growing evidence suggesting that it is possible to target TME in association with other treatment modalities, such as cytotoxic chemotherapy or targeted therapies, paving the way to possible combination strategies with a synergistic effect. Herein, we describe the components of CCA TME - such as cancer-associated fibroblasts and other cells of pivotal importance - with their most relevant interactions, focusing on the preclinical rationale for the development of effective anticancer treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396390PMC
http://dx.doi.org/10.1016/j.tranon.2022.101514DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
chemotherapy targeted
8
targeted therapies
8
cca tme
8
targeting tumor
4
microenvironment cholangiocarcinoma
4
cholangiocarcinoma opportunities
4
opportunities precision
4
precision medicine
4
medicine systemic
4

Similar Publications

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells.

Cell Commun Signal

January 2025

Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.

Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.

View Article and Find Full Text PDF

Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8 T cells, and immune checkpoints.

View Article and Find Full Text PDF

ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway.

Cell Death Differ

January 2025

Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!