A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carissa edulis Vahl (Apocynaceae) extract, a medicinal plant of Benin pharmacopoeia, induces potent endothelium-dependent relaxation of coronary artery rings involving nitric oxide. | LitMetric

AI Article Synopsis

  • - The study explored the antihypertensive potential of three traditionally used plants in Benin (Carissa edulis, Diodia scandens, and Cleome gynandra) by testing their effects on isolated arteries, focusing on their biological activity as cardiovascular treatments.
  • - Researchers prepared extracts from the plants and assessed their effects on porcine coronary arteries and rat aorta, finding that the extract from Carissa edulis specifically induced strong endothelium-dependent relaxation, more so than the other two plants.
  • - The active components in Carissa edulis showed prolonged relaxation effects, linked to nitric oxide activity and identified significant compounds like polyphenols through chemical analysis, suggesting a potential treatment for hypertension.

Article Abstract

Background: Hypertension is a major cardiovascular risk factor that affects most countries including those of Africa. Although Carissa edulis Vahl, Diodia scandens Sw. and Cleome gynandra L. are traditionally used in Benin as antihypertensive treatments with some efficacy mentioned by the local population, their biological activity on the cardiovascular system remains poorly studied.

Aim: The study investigated the vasoreactivity of the plants and assessed the underlying mechanisms using isolated arteries.

Study Design: Aqueous-ethanolic extracts of aerial parts of C. edulis, D. scandens and C. gynandra were prepared by maceration before being subjected to multi-step liquid-liquid fractionation with solvents of increasing polarity. The vasoreactivity of the extracts and fractions were assessed on isolated porcine coronary artery and rat aorta using organ chambers, the role of nitric oxide (NO) using N-nitro-L-arginine (NO synthase inhibitor), prostanoids using indomethacin (cyclooxygenases inhibitor) and endothelium-dependent hyperpolarization using TRAM-34 plus UCL 1684 (inhibitors of calcium-dependent K channels), and the vascular uptake of polyphenols using Neu reagent.

Results: The aqueous-ethanolic crude extract of C. edulis (CECE) induced potent relaxations that were exclusively endothelium-dependent and more pronounced than those to D. scandens and C. gynandra. The n-butanolic fraction of C. edulis (CEBF) was more active than the cyclohexane, dichloromethane, and ethyl acetate fractions. The relaxation induced by CECE and CEBF were inhibited by N-nitro-L-arginine and affected neither by TRAM-34 plus UCL 1684 nor by indomethacin. CEBF induced sustained endothelium-dependent relaxations for at least 60 min, and inhibited, in a concentration-dependent manner, contractions to KCl, CaCl, U46619 and serotonin in rings with endothelium. Analysis of CEBF by LCHRMS indicated the presence of polyphenols, terpenes, and alkaloids. Exposure of coronary artery and aorta rings to CEBF caused the accumulation of polyphenols predominantly in the endothelium.

Conclusion: C. edulis leaf extract induced pronounced endothelium-dependent relaxations and inhibited contractile responses by stimulating the endothelial formation of NO. LCHRMS analysis of the most active fraction, the butanolic fraction, revealed the presence of numerous compounds including polyphenols, terpenes, and alkaloids. The polyphenols of CEBF accumulated preferentially in the endothelium of the arterial wall. Thus, these observations support the folkloric use of C. edulis in hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154370DOI Listing

Publication Analysis

Top Keywords

coronary artery
12
carissa edulis
8
edulis vahl
8
nitric oxide
8
scandens gynandra
8
tram-34 ucl
8
ucl 1684
8
endothelium-dependent relaxations
8
polyphenols terpenes
8
terpenes alkaloids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: