Objectives: The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) have established a program of work to make available, and to enable delivery of well characterized data describing the biological variation (BV) of clinically important measurands. Guided by the EFLM work the study presented here delivers BV estimates obtained from Chinese subjects for 32 measurands in serum.
Methods: Samples were drawn from 48 healthy volunteers (26 males, 22 females; age range, 21-45 years) for 5 consecutive weeks at Chinese laboratory. Sera were stored at -80 °C before triplicate analysis of all samples on a Cobas 8000 modular analyzer series. Outlier and homogeneity analyses were performed, followed by CV-ANOVA, to determine BV estimates with confidence intervals.
Results: The within-subject biological variation (CV) estimates for 30 of the 32 measurands studied, were lower than listed on the EFLM database; the exceptions were alanine aminotransferase (ALT), lipoprotein (a) (LP(a)). Most of the between-subject biological variation (CV) estimates were lower than the EFLM database entries.
Conclusions: This study delivers BV data for a Chinese population to supplement the EFLM BV database. Population differences may have an impact on applications of BV Data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/cclm-2021-0928 | DOI Listing |
Clin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Zoological Survey of India, Kolkata, 700053, India.
Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.
Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.
Appl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFEpigenetics
December 2025
Department of Anthropology, Dartmouth College, Hanover, NH, USA.
Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!