The efficient detection and monitoring of amyloid-β plaques (Aβ42) can greatly promote the diagnosis and therapy of Alzheimer's disease (AD). Fluorescence imaging is a promising method for this, but the accurate determination of Aβ42 still remains a challenge. The development of a reliable fluorescent probe to detect Aβ42 is essential. Herein, we report a rational design strategy for Aβ42 fluorescence probes based on rhodamine-copper complexes, Rho1-Cu-Rho4-Cu, among them Rho4-Cu exhibits the best performance including high sensitivity (detection limit = 24 nM), high affinity ( = 23.4 nM), and high selectivity; hence, Rho4-Cu is selected for imaging Aβ42 in AD mice, and the results showed that this probe can differentiate normal mice and AD mice effectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c01911 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!