Analytical Solution to the Flory-Huggins Model.

J Phys Chem Lett

Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.

Published: August 2022

A self-consistent analytical solution for binodal concentrations of the two-component Flory-Huggins phase separation model is derived. We show that this form extends the validity of the Ginzburg-Landau expansion away from the critical point to cover the whole phase space. Furthermore, this analytical solution reveals an exponential scaling law of the dilute phase binodal concentration as a function of the interaction strength and chain length. We demonstrate explicitly the power of this approach by fitting experimental protein liquid-liquid phase separation boundaries to determine the effective chain length and solute-solvent interaction energies. Moreover, we demonstrate that this strategy allows us to resolve differences in interaction energy contributions of individual amino acids. This analytical framework can serve as a new way to decode the protein sequence grammar for liquid-liquid phase separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421911PMC
http://dx.doi.org/10.1021/acs.jpclett.2c01986DOI Listing

Publication Analysis

Top Keywords

analytical solution
12
phase separation
12
chain length
8
liquid-liquid phase
8
phase
5
analytical
4
solution flory-huggins
4
flory-huggins model
4
model self-consistent
4
self-consistent analytical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!