Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasing research suggests that sphingolipid metabolism is essential for the progression and metastasis of cancer. The underlying mechanistic insight into the dysregulation of sphingolipid metabolism affecting pathways is poorly investigated. As a result, the goal of the current study was to glean knowledge from the systems biology approach to investigate how the sphingolipid metabolism affects the signal transduction network in non-small cell lung cancer (NSCLC), the most common type of cancer in terms of occurrence and death globally. Our paper includes system-level models representing the diseased and healthy states elucidating that sphingolipids and its enzymes mediate PI3K/AKT pathway. Notably, its activation of downstream signaling mediators has led to cancer growth. Considering the critical role of sphingolipids in NSCLC, our study advocates the target CERS6 which can be potentially inhibited using hsa-miR-520c-3p to combat NSCLC for future precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.30319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!