Evidence of marine target impacts, binary impact craters, or impact clusters are rare on Earth. Seismic reflection data from the Guinea Plateau, West Africa, reveal a ≥8.5-km-wide structure buried below ~300 to 400 m of Paleogene sediment with characteristics consistent with a complex impact crater. These include an elevated rim above a terraced crater floor, a pronounced central uplift, and extensive subsurface deformation. Numerical simulations of crater formation indicate a marine target (~800-m water depth) impact of a ≥400-m asteroid, resulting in a train of large tsunami waves and the potential release of substantial quantities of greenhouse gases from shallow buried black shale deposits. Our stratigraphic framework suggests that the crater formed at or near the Cretaceous-Paleogene boundary (~66 million years ago), approximately the same age as the Chicxulub impact crater. We hypothesize that this formed as part of a closely timed impact cluster or by breakup of a common parent asteroid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385158PMC
http://dx.doi.org/10.1126/sciadv.abn3096DOI Listing

Publication Analysis

Top Keywords

west africa
8
marine target
8
impact crater
8
impact
7
crater
5
nadir crater
4
crater offshore
4
offshore west
4
africa candidate
4
candidate cretaceous-paleogene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!